Открытые и замкнутые системы отопления и охлаждения

В системах отопления и охлаждения для компенсации температурных расширений теплоносителя до недавнего времени широко применялись расширительные баки открытого типа, которые имеют ряд недостатков.

- Постоянный контакт рабочей жидкости с атмосферным воздухом. Как следствие этого, возникает насыщение теплоносителя воздухом, что является причиной возникновения проблем с циркуляцией жидкости, возникновения кавитации в трубопроводах, насосах и появления дефектов, вызванных коррозией.
- Раздражающий шум в трубопроводе и насосах, возникающий из-за наличия в воде воздушных пузырьков.
- Интенсивное испарение жидкости из системы вследствие контакта с атмосферой (необходимо регулярно пополнять систему).
- Открытый расширительный бак может устанавливаться только в верхней точке системы, что не всегда удобно.

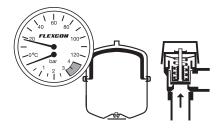
Расширительные баки закрытого типа (мембранного) лишены вышеописанных недостатков. Рабочая жидкость в мембранном баке отделена от газовой полости с помощью высокопрочной резиновой мембраны. В качестве газа используется азотосодержащая смесь. В случае температурного расширения теплоносителя в системе газовая «подушка» в баке сжимается и вода поступает в бак. И наоборот, при охлаждении системы сжатый газ выдавливает жидкость в систему, тем самым пополняя ее. Наличие газовой «подушки», находящейся под давлением, позволяет устанавливать мембранный расширительный бак в любой точке системы (в подвале или непосредственно в тепловом пункте).

Расширительные баки Flexcon для систем отопления и охлаждения

В конце 50-х годов компания Flamco первой на европейском рынке разработала и представила концепцию закрытой циркуляционной системы отопления, которая основывается на применении расширительного мембранного бака Flexcon. Более пятидесяти лет эксплуатации, исследований и совершенствования конструкции показали: расширительные мембранные баки Flexcon исключительно надежны благодаря высокому качеству изготовления как корпуса бака, так и резиновой мембраны. В результате на сегодняшний день свыше 30 миллионов расширительных баков такого типа установлены во многих странах мира.

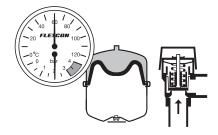
Отличительные особенности баков Flexcon

- Мембрана расширительного бака Flexcon не растягивается, а «раскатывается» по стенкам бака, что повышает ее надежность.
- Специальная конструкция зажимного кольца Flexcon обеспечивает долгий срок службы и предотвращает падение начального давления.

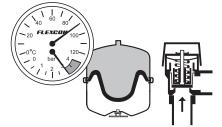


Работа расширительного бака Flexcon (на примере системы отопления)

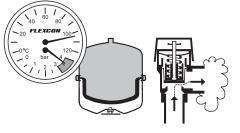
1. Заполнение системы


Давление воздуха внутри бака плотно прижимает диафрагму к водяной части бака. Расширительный бак не заполнен водой.

UUPON LOSO	Равен полному объему расширитель- ного бака Flexcon.
Давление газа	Равно предварительному давлению в расширительном баке Flexcon.


2. Работа системы

Объем газа	Газ внутри бака сжимается. Расширительный бак Flexcon частично заполнен водой.		
_	Равно рабочему давлению системы		
Давление газа	в месте установки расширительного бака.		


3. Максимальное давление в расширительном баке

	Расширительный бак заполнен водой		
Объем газа	до максимума. Газ занимает мини-		
	мальный объем.		
Давление газа	Равно максимальному давлению		
	системы.		

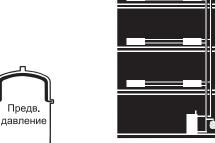
4. Расширительный бак при избыточном давлении

При превышении максимально допустимого давления срабатывает предохранительный клапан Prescor, через который сбрасываются излишки воды.

Подбор расширительных баков для систем отопления

Объем бака следует подбирать так, чтобы полезный объем бака был не менее объема температурного расширения теплоносителя.

Исходными данными при расчете расширительного бака будут являться:


- объем теплоносителя (воды) в системе: V_{сист.}, (л). Данная величина может быть вычислена исходя из мощности системы;
- статическая высота (статическое давление). Высота столба жидкости в системе, находящегося над баком. Один метр водяного столба создает давление 0,1 бар;
- предварительное давление расширительного бака: $P_{\text{предв.}}$ давление газа в газовой камере пустого

расширительного бака при комнатной температуре. Предварительное давление подбирается равным статическому давлению столба теплоносителя в системе. Таким образом, до введения системы в эксплуатацию давление газа в баке компенсирует статическое давление столба жидкости, в результате чего мембрана бака находится в равновесии, при этом бак еще не заполнен;

- максимальное давление: $P_{\text{макс.}}$ максимальное рабочее давление в месте установки расширительного бака:
- средняя температура системы: $T_{cp.}$, (°C) средняя температура системы в процессе работы.

Предв. давление 1 бар

Порядок расчета

- 1. Определяется коэффициент расширения жид-кости $K_{\text{расш.}}$ (прирост объема, %) при ее нагреве (охлаждении) от 10 °C (принимается, что система заполняется при температуре 10 °C) до средней температуры системы. Для определения этого коэффициента используется таблица или диаграммы, данные далее.
- 2. Определяется объем расширения: $V_{\text{расш.}}$, (л) объем жидкости, вытесняемый из системы при ее нагреве от 10° С до средней температуры системы.
- 3. Определяется коэффициент заполнения бака (коэффициент эффективности) $K_{\text{зап.}}$ при заданных условиях работы, показывающий максимальный объем жидкости (в процентах от полного объема расширительного бака), который может вместить расширительный бак. Все давления в формуле измеряются в абсолютных единицах!
- 4. Определяется потребный полный объем расширительного бака: V, (л); вводится коэффициент запаса 1,25.
- 5. Выбирается модель расширительного бака Flexcon с округлением в сторону ближайшего целого по таблицам № 5-11.

$$V_{\text{расш.}} = V_{\text{сист.}} \times K_{\text{расш.}}$$

$$K_{\text{зап.}} = \frac{(P_{\text{макс.}} - P_{\text{предв.}})}{P_{\text{макс.}}}$$

$$V = \frac{1,25 \times V_{\text{расш.}}}{K_{\text{зап.}}}$$

Таблица № 1. Определение коэффициента расширения воды при ее нагреве от 10 °C до средней температуры системы

Температура, (°С)	Расширение, (%)
10-40	0,75
10-50	1,18
10-60	1,68
10-70	2,25
10-80	2,89
10-90	3,58
10-100	4,34
10-110	5.16

Рисунок № 1. Диаграмма температурного расширения смеси воды и этиленгликоля в % при ее нагреве (охлаждении) от 10 °C до средней температуры системы

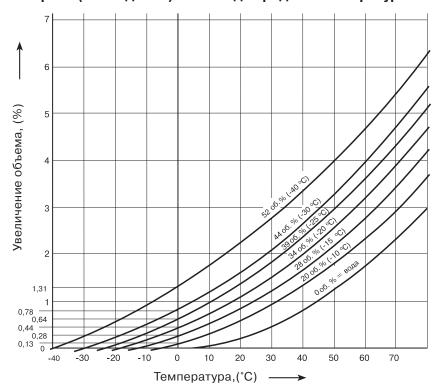
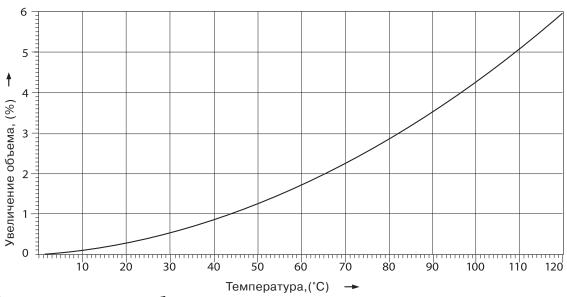



Рисунок № 2. Диаграмма температурного расширения воды в % при ее нагреве (охлаждении) от 10 °C до средней температуры системы


Пример подбора расширительного бака

1. Определяется коэффициент расширения жидкости $K_{\text{расш.}}$ (прирост объема, %) при ее нагреве (охлаждении) от 10 °C (принимается, что система заполняется при температуре 10 °C) до средней температу-

ры системы. Для определения этого коэффициента используется следующая таблица или диаграммы.

Данный порядок подбора использован для составления таблиц подбора расширительных баков.

Исходные данные	Расчет
Объем воды в системе: V _{сист.} = 1200 л	Коэффициент расширения К _{расш.} = 2,89 %
Температура: T = 90/70 °C (Tcp. = 80 °C)	V _{расш.} = 1200 x 2,89/100 (по диагр.) = 34,68 л
Статическая высота: 5 м	$K_{\text{3an.}} = \frac{(3+1) - (0,5+1)}{(3+1)} = 0,625$
Максимальное рабочее давление: 3 бар	$V = \frac{1,25 \times 34,68}{0,625} = 69,4 л$
Бойлер установлен в подвале	Рекомендация: 1xFlexcon 80/0,5

Модели и размеры расширительных баков для отопления и охлаждения

Расширительный бак Flexcon C низкого давления

Применение: Для компенсации температурных расширений теплоносителя в системах отопления и охлаждения. Может применяться для этиленгликолевых смесей с концентрацией не более 50 %.

- Максимальное рабочее давление 3 бар.
- Максимальная рабочая температура 70 °C.
- Максимальный коэффициент заполнения баков **62** %.

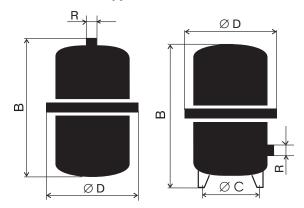


Таблица № 5. Параметры расширительного бака Flexcon C

Manua	Предвар. давле- ние газа, (бар)	Габаритные размеры, (мм)			Присоединение, внешняя резьба*	Масса,
Марка		Ø D	В	ØC	дюймы	(кг)
Flexcon C 2	1,5	194	152	-	3/4"	1,1
Flexcon C 4	1,5	194	257	-	3/4"	1,6
Flexcon C 8	1,5	245	304	-	3/4"	2,2
Flexcon C 12	1,5	286	336	-	3/4"	2,7
Flexcon C 18	1,5	328	328	-	3/4"	3,7
Flexcon C 25	1,5	358	380	-	3/4"	4,5
Flexcon C 35	1,5	396	439	263	3/4"	5,4
Flexcon C 50	1,5	435	495	263	3/4"	11,2
Flexcon C 80	1,5	519	551	360	1"	15,0

Примечание: максимальное давление газа 1,5 бар.

Расширительный бак Flexcon CE Top

Применение: Для компенсации температурных расширений теплоносителя в системах отопления и охлаждения. Может применяться для этиленгликолевых смесей с концентрацией не более 50 %.

- Максимальное рабочее давление 6 бар.
- Максимальная рабочая температура 70 °C.
- Максимальный коэффициент заполнения баков **62** %.

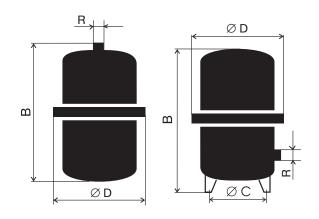


Таблица № 6. Параметры расширительного бака СЕ Тор (6 бар)

Manua	Габари	тные размері	ы, (мм)	Присоед., внешняя резьба*	Macca,
Марка	Ø D	В	ØC		(кг)
Flexcon CE Top 2	194	152	-	3/4"	2,2
Flexcon CE Top 4	194	257	-	3/4"	3,2
Flexcon CE Top 8	245	280	-	3/4"	3,2
Flexcon CE Top 12	286	313	-	3/4"	4,5
Flexcon CE Top 18	328	306	-	3/4"	5,7
Flexcon CE Top 25	358	359	-	3/4"	7,3
Flexcon CE Top 35	396	416	263	3/4"	8,8
Flexcon CE Top 50	435	473	263	3/4"	11,2
Flexcon CE Top 80	519	540	360	1"	15,0

Примечание: максимальное давление газа 3 бар.

^{*}Тип резьбы – трубная коническая R (ISO 7/1).

^{*}Тип резьбы – трубная коническая R (ISO 7/1).