Technical Data
 Electric double-motor-actuators

Contents Page
General data - Overview, application, design and mode of operation, 2 mounting position
Technical details- General3

- Motors 3
- Switching and signaling unit 3
Electrical data of motors 4
Dimensional drawings 5-6
Wiring diagrams 7

Technical Data

General data

Overview

Electric double-motor actuators for closed-loop control equipment	
R series Type	M76348-D M76348-E M76348-F
Cut-off torque, not adjustable Size to DIN 3210	$\begin{array}{ccc} 750 \mathrm{Nm} & 1500 \mathrm{Nm} & 3000 \mathrm{Nm} \\ 3 & 4 & 5 \end{array}$
Output speed - for closed-loop control operation - for high-speed operation	5 or 10 rpm 20,40 or 80 rpm
Motors - Control motor Operating mode to DIN EN 60034	Three-phase motors with 3 PTC thermistors without or with brake S4/S5 intermittent duty - 10% cdf - $-1200 \mathrm{c} / \mathrm{h}$ with < 3kW - $600 \mathrm{c} / \mathrm{h}$ with $>3 \mathrm{~kW}$
- High-speed motor Betriebsart nach DIN EN 60034	without brake S 2-5 min min short-time duty

Application

Double-motor actuators are special actuators which are used for open-loop control functions in addition to the closed-loop control operation.
The positioning time reached by the control motor with the gear unit lies well within the range normally used for closed-loop control circuits. The positioning time reached by the high-speed motor is required for particular operating conditions in view of safety considerations. When the safe position is reached with the high-speed motor the control motor once again takes over the control function of the actuator in the control circuit via an appropriate switching unit.

Corresponding to the specific tasks in a power station, three actuators with a cut-off torque of $750 \mathrm{Nm}, 1500 \mathrm{Nm}$ and 3000 Nm can be supplied; the ratio of the output speeds is specified in the ordering data.

Double-motor actuators are normally mounted directly on the valve, for instance on a steam reduction valve.

Design and mode of operation

The gear unit is a combination of a primary spur gear, two self-locking worm gears and a planetary gear.
(cf. Fig. 1).
In low-speed operation the power flow goes from the closed-loop control motor (6) via the primary spur gear and the worm gear I (8) to the sun wheel of the planetary gear (4). The annulus of the planetary gear (4) is held in position by the self-locking worm gear II (5) via a hollow shaft. As a result the sun wheel transmits its rotary motion via the planetary gear (4) carrier onto the drive shaft (shaft end) (11).

In high-speed operation the power of the high-speed motor (3) is transmitted to the annulus via worm gear II (5). In this case the sun wheel of the planetary gear (4) is held in position by the self-locking of worm gear I (8) and the annulus rotation is transmitted to the carrier of the planetary gear (4) and in this way to the securely coupled drive shaft (11).

The torque-dependent cut-off is actuated by the traveling worm of planetary gear I.
The high-speed motor can only be switched off by travel-dependent switches.
The switching and signaling unit is driven by the drive shaft through an intermediate gear.
The handwheel acts on the worm gear of planetary gear I through a link. By using a changeover lever during standstill of both motors manual operation can be switched on. Switching back takes place automatically when the control motor Starts.

Mounting position

The actuators can operate in any mounting position. However, since the gear runs in grease and it is not possible to keep the seals completely oil-tight over an extended period of operation it is advisable to mount the actuator on the final control element in such a way that the two motors are not hanging downward. In the case of horizontal mounting the actuator must be supported.

Technical Data

Technical details

Motors	
Type and mains connection	Three-phase asynchronous motors 3/PEN AC 50 Hz 230/400 V or 500 V with or without brake (high-speed motor only without brake) 3 PTC thermistor temperature detectors
Thermal protection	- H for motors without brake Insulation class Electric data

Switching and signaling unit	
Torque-dependent and travel-dependent switches (DE and WE) - Versions - Connection types Mechanical lifetime - Switches - with silver contacts permissible current loading with gold-plated contacts permissible voltage rated utilization voltage Note: Operation with a voltage hig since it damages the conta of the microswitch is only p	Microswitches with silver contacts or with gold-plated contacts as NC, NO or changeover contacts, switchable with the same voltage potential approx. 10^{7} switching cycles max. DC 60 V DC 24 V ; 3 to 15 mA her than 60 V is not permissible t properties. Contact assignment ssible with the same potential.
Electronic position transmitter (ESR) - Version - Measuring range - smallest measuring span - largest measuring span - Torque at drive shaft	2SX9000-1WR00 (C73451-A383-A1 / R410134) without restoring spring, turning through $\begin{array}{r} 0 \text { to } 340^{\circ} \\ 80^{\circ} \\ 340^{\circ} \end{array}$ approx 0.1 Ncm
- Electric connection	$\begin{array}{l}\text { 3- or 4-wire } \\ \text { connection }\end{array}$ 2- wire connection
- Supply voltage UH - Maximum load RL - Output signal - Current consumption	DC 18 to 30 V DC 12 to 30 V $50 \cdot($ UH $-2,5) \Omega$ $50 \cdot($ UH -12$) \Omega$ load-independent direct current0 to $20 \mathrm{mA1})$ $\begin{array}{l}4 \text { to } 20 \mathrm{~mA} \\ \text { max. } 30 \mathrm{~mA}\end{array}$
- Linearity error (tolerance band setting) for a measuring span of 270° - Influence with a measuring span of 270° for - supply voltage - load - ambient temperature Space heater (Hz)	$\begin{aligned} & \leq 1 \% \\ & \} \leq 0,1 \% \text { over the whole range } \\ & \leq 0,3 \% / 10 \mathrm{~K} \end{aligned}$
- Supply voltage - Power consumption	AC $24 \mathrm{~V}, 110 \mathrm{~V}$ or 230 V depending on order 7 to 8 W

[^0]
Technical Data

Electrical Data of motors

Complete thermal protection with 3 PTC thermistor temperature detectors possible for every motor

Double-motor	actuators,		Data of	used mom										
R series Motor	M76348-	Cut-off torque Nm	$\begin{array}{\|l} \text { Rated } \\ \text { power } \\ \text { to VDE } \\ 0530 \\ \text { kW } \end{array}$	No. of poles	Rated speed rpm	\|Efficiency η	Power factor $\cos \varphi$	Rated current at $400 \mathrm{~V}^{1)}$ A	Lockedrotor current factor	Rated torque	Lockedrotor torque factor	Size to DIN 42673	Form to DIN 42950	Flange size to DIN 42948
	$\begin{aligned} & \text {-D52 } \\ & \text {-D53 } \end{aligned}$		0.75		1220	61	0.84	2.2	3.3	5.9	2.7	80		
	$\begin{aligned} & \text {-D54 } \\ & \text {-D55 } \end{aligned}$													A 200
Closed-loop	$\begin{aligned} & \text {-E52 } \\ & \text {-E53 } \end{aligned}$		1.5					4.1	3.8	11.4				
without brake	$\begin{aligned} & \text {-E54 } \\ & \text {-E55 } \end{aligned}$													
	$\begin{aligned} & \text {-F52 } \\ & \text {-F53 } \end{aligned}$		3.0							21	3.2			
	$\begin{aligned} & \text {-F54 } \\ & \text {-F55 } \end{aligned}$		5.5		1360	80	0.84	12.5	4.8	38	2.5	132 S		A 300
	$\begin{aligned} & \hline \text {-D52 } \\ & \text {-D53 } \end{aligned}$		0.75		1220	61	0.84	2.2	3.3	5.9	2.7	80		
	$\begin{aligned} & \text {-D54 } \\ & \text {-D55 } \end{aligned}$													A 200
	-E52 -E53		1.5		1260	65	0.85	4.1	3.8	11.4	2.7	90 L		
with brake	$\begin{aligned} & \hline \text {-E54 } \\ & \text {-E55 } \end{aligned}$													
	$\begin{aligned} & \text {-F52 } \\ & \text {-F53 } \end{aligned}$		3.0		1320	69	0.84	7.4	4.6	21.7	3.2	100 L		A 250
	$\begin{aligned} & \text {-F54 } \\ & \text {-F55 } \end{aligned}$		5.5		1425	80	0.84	12.5	4.8	38	2.5	132 S		A 300
	-D52		3	8	700	77	0.74	8	4.1	41	2.1	132 M		
	-D53	750	5.5	4	1455	86	0.81	12	6.3	36	2.5	132 S		A 300
	-D55		7.5	2	2930	88	0.89	14.5	6.9	24	2.3			
	-E52		4	8	715	80	0.72	10.5	4.5	53				
High-speed motor	$\begin{aligned} & \text {-E53 } \\ & \text {-E54 } \end{aligned}$	1500	11	4	1460	88	0.84	22.6	6.2	72	2.2	160 M	B 5	
	-E55		15	2	2940	90	0.9	27.8	6.6	49				
	-F52		7.5	8	715	85	0.72	18.6	5.3	100	2.7			A 350
	$\begin{aligned} & \text {-F53 } \\ & \text {-F54 } \end{aligned}$	3000	15	4	1460	90	0.84	30	6.5	98	2.6	160 L		
	-F55		27.5	2	2850	82	0.86	60	4.8	92	2.1	160 M		

[^1]
Dimensional drawing M76348-D

Technical Data

Dimensional drawing M76348-E, M76348-F

Doublemotor actuator	Size acc. DIN 3210	Cut-off torque	A	B	C Threaded bores	D	G	H	J Featherkey acc. DIN 6885, sheet 1	$\begin{gathered} \mathrm{K} \\ \max \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \max \end{gathered}$	$\begin{gathered} \mathrm{M} \\ \max \end{gathered}$	N	P	Q	R
M76348-E	4	1500 Nm	160	254	$8 \times \mathrm{M} 16,20$ deep	50	110	53.5	A $14 \times 9 \times 100$	207	500	525	158	430	605	135
M76348-F	5	3000 Nm	180	300	$8 \times \mathrm{M} 20,28$ deep	60	120	64	A $18 \times 11 \times 110$	272	610	525	148	420	595	177

Wiring diagram M76348

Motor connections

Three-phase motor for closed-loop
control, with PTC thermistors,
with or without mechanical brake,
with or without anti-condensation heater

Three-phase motor for high-speed operation, with PTC thermistors, without brake, with or, without anti-condensation heater

Electric connection via terminals

Three-phase motor for closed-loop control, with PTC thermistors and with mechanical DC-operated brake for high-speed cut-off, with or without anti-condensation heater

Electric connection via Terminals

Plug,
10-way, 400 V
Plug,
10-way, 500 V

Switching during operation

Supply disconnection

Circuit for the version with brake motor
The eventually mounted brake motor is designed for quick stopping. For that the brake connection (Br) has to be connected to the phase conductor L2 before the reversing contactor module (see terminal connection diagram in the terminal compartment).

Voltage disconnection in case of quick stopping is only possible over the main switch, because voltage can be present via the tapped "Br" line even when the contactor is switched off.
Change of direction of rotation is only possible in interverting the phases L1 and L3! With normal cut-off, connect Br to V 1 .

Connection of switching and signaling unit

The connection diagram is valid for terminal and plug connection.

BL	Blinker contact	POT	Potentiometer for position indication
DE	Torque-dependent switch	ESR	Electronic position transmitter
WE	Travel-dependent switch		a with 2-wire connection
	The DE and WE switches are shown not activated	HZ	b with 3-/4-wire connection
	Space heater		

[^0]: ${ }^{1)} 4$ to 20 mA setting possible

[^1]: ${ }^{1)}$ For other voltages convert the values to the inverse proportional voltage, e.g.: $I_{500 \mathrm{v}}=I_{400 \mathrm{~V}}$.
 $\frac{400 \mathrm{~V}}{500 \mathrm{~V}}$

