
avrora-arm.ru +7 (495) 956-62-18

модуль аналогового ввода «ЭЛЕМЕР-EL-4015»

Руководство по эксплуатации НКГЖ.424229.002РЭ

СОДЕРЖАНИЕ

1. Введение	3
2. Описание и работа	3
2.1. Назначение изделия	3
2.2. Технические характеристики	
2.3. Комплектность	
2.4. Устройство и работа	
2.5. Настройка	
2.6. Маркировка и пломбирование	
2.7. Упаковка	
3. Использование изделия по назначению	12
3.1. Подготовка изделия к использованию	12
3.2. Использование изделия	
4. Методика поверки	1/
5. Правила транспортирования и хранения	
6. Свидетельство о приемке	
7. Свидетельство об упаковывании	
8. Ресурсы, сроки службы и хранения и	22
гарантии изготовителя (поставщика)	23
9. Особые отметки	
Приложение А. Габаритные и монтажные размеры	
Вид передней панели	
Вид задней панели	
Приложение Б. Функциональная схема	27
Схема подключения ТС	28
Приложение В. Описание регистров	
Приложение Г. Схема подключения при настройке	
Схема подключения к ПК	
Приложение Д. Монтаж на DIN-рейку	
Крепление к панели	
Крепление «ЭЛЕМЕР-EL-4015»	
Приложение Е. Пример записи обозначения при заказе	53

1. ВВЕДЕНИЕ

1.1. Настоящий комплект эксплуатационной документации, объединяющий руководство по эксплуатации, паспорт и методику поверки, предназначен для ознакомления с устройством и правилами эксплуатации модуля аналогового ввода «ЭЛЕМЕР-EL-4015» (далее – EL-4015) и содержит сведения, удостоверяющие гарантии изготовителя.

2. ОПИСАНИЕ И РАБОТА

2.1. Назначение изделия

- 2.1.1. EL-4015 предназначен для измерения и преобразования сигналов термометров (термопреобразователей) сопротивления (TC) в цифровой код и передачи информации компьютеру (ПК) об измеренных значениях температуры или сопротивления через интерфейс RS 485 с использованием протокола обмена MODBUS RTU или UAIL.
- 2.1.2. EL-4015 используется в системах автоматического контроля, регулирования и управления технологическими процессами, в том числе и совместно с модулями серии «ЭЛЕМЕР-EL-4000» производства НПП «ЭЛЕМЕР» или устройствами, поддерживающими протокол MODBUS RTU.
- 2.1.3. EL-4015 имеет шесть гальванически связанных измерительных каналов аналогового ввода.
 - 2.1.4. EL-4015 имеет общепромышленное исполнение.
- 2.1.5. По устойчивости к климатическим воздействиям при эксплуатации EL-4015 соответствует:
 - группе исполнения С4, но при температуре окружающего воздуха от минус 25 до плюс 75 °C по ГОСТ Р 52931-2008 (индекс заказа С4);
 - виду климатического исполнения Т3, но при температуре окружающего воздуха от минус 25 до плюс 75 °C по ГОСТ 15150-69 (индекс заказа Т3).
- 2.1.6. В соответствии с ГОСТ 14254-96 степень защиты от попадания внутрь EL-4015 твердых тел и воды IP20.
- 2.1.7. В соответствии с ГОСТ Р 50746-2000 по устойчивости к электромагнитным помехам EL-4015 соответствует группе исполнения III (для всех видов помех, кроме кондуктивных помех в цепях входных измерительных каналов) и критерию качества функционирования A.
- 2.1.7.1. EL-4015 нормально функционирует и не создает помех в условиях совместной работы с аппаратурой систем и элементов, для которых он предназначен, а также с аппаратурой другого назначения, которая может быть использована совместно с данным EL-4015 в типовой помеховой ситуации.

2.2. Технические характеристики

2.2.1. Диапазоны измерений, входные параметры и пределы допускаемых основных приведенных погрешностей измеряемых величин относительно номинальной статической характеристики (HCX) EL-4015 для конфигурации с термометрами (термопреобразователями) сопротивления по ГОСТ Р 8.625-2006 (ГОСТ 6651-94) приведены в таблице 2.1.

Таблица 2.1 — EL-4015 для конфигураций с входными электрическими сигналами от термометров (термопреобразователей) сопротивления (TC) по ГОСТ Р 8.625-2006 (ГОСТ 6651-94)

(10)101001	. 0.020 2	000 (1.001	000101)		
			Входные	Пределы до	
Тип	o = -1.	_	параметры по НСХ	основной пр	
первичного	α, °C ⁻¹ *	Диапазон		погрец	
преобразователя	(W ₁₀₀)**	измерений,	сопротивление, Ом	относительно НСХ, %	
' '		°C	, , ,	для индек	
FOM			20.22 02.00	A	В
50M	0,00428*		39,2392,80		
100M			78,46185,60		
50M	(1,4280)**		39,2392,78		
100M	, ,		78,45185,55		
50M			39,3592,62		
53М (Гр. 23)***	(1,4260)**		47,7198,17		
100M			78,69185,23		
50∏		-50+200	40,0088,52		
46П (Гр.21)	0,00391*	-501200	36,8081,44	±0,1	±0,2
100Π			80,00177,04		
50 П			40,0088,53		
46П (Гр.21)	(1,3910)**		36,8081,44		
100∏			80,00177,05		
Pt100	0,00385*		80,31175,86		
Pt1000*5	0,00365		803,101758,60		
Pt100	(4.0050)**		80,31175,86		
Pt1000*5	(1,3850)**		803,101758,60		
			27,43145,87		
46П (Гр.21)			7,93145,87* ⁵		
50П	0.00201*		29,82158,56		
5011	0,00391*		8,62158,56* ⁵		
4000			59,64317,11		
100∏		-100+600	17,24317,11* ⁵		
105 (5.04)		-200+600* ⁵		±0,1****	±0,2****
46П (Гр.21)			7,96145,90* ⁵		
	(4.0040)***		29,82158,59		
50∏	(1,3910)**		8,65158,59* ⁵		
4000			59,64317,17		
100∏			17,30317,17* ⁵		
			, , , , , , , , , , , , , , , , , , , ,		

Продолжение 1	таблицы	2.1
---------------	---------	-----

			Входные	Пределы до		
Тип			параметры по НСХ	основной пр	оиведенной	
первичного	α, °C ⁻¹ *	Диапазон	Диапазон		погрешности	
преобразователя	(W ₁₀₀)**	измерений,	сопротивление, Ом	относитель	ьно НСХ, %	
преобразователя		°C	сопротивление, Ом	для индекса заказа		
				Α	В	
Pt100			60,26313,71			
FUIO	0.00205*		18,52313,71* ⁵		1	
Pt1000*5	0,00385*		602,603137,1			
F11000		-100+600_	185,203137,1* ⁵	±0,1****	±0.2****	
Pt100		-200+600* ⁵	00,20010,71	±0,1	±0,2	
1 1100	(1,3850)**		18,52313,71* ⁵			
Pt1000*5	(1,3630)		602,603137,1			
F11000			185,203137,1* ⁵			
Ni100	0,006170*	-60+180	69,45223,21	±0,1	±0,2	
Ni100	(1,6170)**	-00+100	69,45223,21	10,1	10,2	

Примечания

- 2.2.2. Предел допускаемой дополнительной погрешности EL-4015, вызванной изменением температуры окружающего воздуха от нормальной (20 ± 5) °C до любой температуры в пределах рабочих температур на каждые 10 °C изменения температуры, не превышает 0,5 предела допускаемой основной погрешности.
- 2.2.3. Максимальное сопротивление каждого провода соединения EL-4015 с TC 15 Ом.
- 2.2.4. Питание EL-4015 осуществляется от источника постоянного тока напряжением от 10 до 30 В при номинальном значении 24 В (в качестве источника питания 24 В можно использовать модуль питания «ЭЛЕМЕР-EL-4001PWR» производства НПП «ЭЛЕМЕР»).
 - 2.2.5. Потребляемая мощность не более 0,8 Вт.
- 2.2.6. Изоляция электрических цепей питания и интерфейса относительно цепей измерительных каналов в зависимости от условий испытаний выдерживает в течение 1 мин действие испытательного напряжения постоянного тока:
 - -3000 В при температуре окружающего воздуха (20±5) °C и относительной влажности от 30 до 80 %;
 - 1800 В при температуре окружающего воздуха (35±3) °С и относительной влажности (95±3) %.

^{1 *} В соответствии с ГОСТ Р 8.625-2006.

^{2 **} В соответствии с ГОСТ 6651-94.

^{3 ***} Диапазон измерений (-50...+180) °C.

^{4 ****} За исключением поддиапазона (-50...+200) °С.

^{5 *&}lt;sup>5</sup> По отдельному заказу.

- 2.2.7. Сопротивление изоляции электрических цепей питания и интерфейса относительно цепей измерительных каналов при испытательном напряжении 500 В не менее:
 - -20 МОм при температуре окружающего воздуха (20 \pm 5) °C и относительной влажности от 30 до 80 %;
 - −5 МОм при температуре окружающего воздуха (75±3) °С и относительной влажности от 30 до 80 %;
 - 1 МОм при температуре окружающего воздуха (35±3) °С и относительной влажности (95±3) %.
- 2.2.8. Цепь питания и цепь интерфейса RS 485 гальванически связаны, допустимое напряжение цепей DATA+, DATA- относительно цепи GND находится в диапазоне от минус 7 до плюс 12 В.
- 2.2.9. Время измерения одного канала зависит от частоты измерения аналого-цифрового преобразователя (АЦП) в соответствии с таблицей В.7.
 - 2.2.10. Количество EL-4015 в сети не должно быть более 32 шт.
- 2.2.11. Поддерживаемые скорости обмена через порт RS 485, бод: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200.
- 2.2.12. Длина линии связи не более 1200 м при скорости обмена не более 19200 бод (п. 2.4.6.5).
- 2.2.13. Габаритные размеры EL-4015 (рисунок А.1 приложения A), мм, не более:

– длина	101;
– ширина	70;
– высота	44;
– высота без панели крепления на DIN-рейку	25,5.

- 2.2.14. Масса EL-4015 не более 0,15 кг.
- 2.2.15. EL-4015 устойчив к воздействию температуры окружающего воздуха от минус 25 до плюс 75 °C.
- 2.2.16. EL-4015 устойчив к воздействию влажности до 95 % при температуре 35 $^{\circ}$ C.
- 2.2.17. EL-4015 в транспортной таре выдерживает температуру от минус 50 до плюс 50 °C.
- 2.2.18. EL-4015 в транспортной таре прочен к воздействию воздушной среды с относительной влажностью 98 % при температуре $35\,^{\circ}\text{C}$.
- 2.2.19. EL-4015 в транспортной таре устойчив к воздействию ударной тряски с числом ударов в минуту 80, средним квадратичным значением ускорения 98 м/с 2 и продолжительностью воздействия 1 ч.
- 2.2.19.1. EL-4015 прочен к воздействию синусоидальных вибраций высокой частоты (с частотой перехода от 57 до 62 Гц) со следующими параметрами:

- частота (5-80) Гц;
- амплитуда смещения для частоты ниже частоты перехода 0,15 мм;
- амплитуда ускорения для частоты выше частоты перехода 19,6 м/c².

Предел допускаемой дополнительной погрешности EL-4015 во время воздействия вибрации не превышает предела допускаемой основной погрешности.

- 2.2.20. Обеспечение электромагнитной совместимости и помехозащищенности EL-4015
- 2.2.20.1. В соответствии с ГОСТ Р 50746-2000 по устойчивости к электромагнитным помехам EL-4015 соответствует группе исполнения III (для всех видов помех, кроме кондуктивных помех в цепях входных измерительных каналов) и критерию качества функционирования A.
- 2.2.20.2. EL-4015 нормально функционирует и не создает помех в условиях совместной работы с аппаратурой систем и элементов, для которых он предназначен, а также с аппаратурой другого назначения, которая может быть использована совместно с данным EL-4015 в типовой помеховой ситуации.
 - 2.2.21. Показатели надежности
 - 2.2.21.1. Средняя наработка на отказ не менее 100000 ч.
 - 2.2.21.2. Средний срок службы не менее 12 лет.

2.3. Комплектность

Модуль аналогового ввода «ЭЛЕМЕР-EL-4015»	1 шт.
Розетка EC381V-13P	2 шт.
Панель для крепления на DIN-рейку	1 шт.
Программа «EL-4000 Config» (по заказу)	1 экз.
Руководство по эксплуатации	1 экз.
Талон на гарантийный ремонт и послегарантийное	
обслуживание	1 экз.

2.4. Устройство и работа

2.4.1. Общий вид

- 2.4.1.1. Общий вид передней панели с обозначениями контактов разъёмов приведен на рисунке А.2 приложения А. Вид задней панели приведен на рисунке А.3 приложения А.
- 2.4.1.2. На передней панели расположен светодиодный индикатор «Обмен». На задней панели расположен переключатель.

2.4.2. Элементы индикации

- 2.4.2.1. Индикатор «Обмен» работает следующим образом:
- -индикатор имеет пониженную яркость при включении питания;
- индикатор имеет повышенную яркость при обмене данными;
- индикатор находится в режиме мигания в течение 10 с при обнаружении специальной интерфейсной команды (команды идентификации EL-4015 в сети).

2.4.3. Управление EL-4015

- 2.4.3.1. Управление EL-4015 осуществляется ПК через интерфейс RS 485 с использованием протокола обмена MODBUS RTU или UAIL.
- 2.4.3.2. На задней панели EL-4015 расположен переключатель, который используется при настройке EL-4015 и предназначен для запуска EL-4015 с фиксированной скоростью обмена 9600 бод с одним стоп-битом, без паритета и с сетевым адресом, равным 1, по протоколу MODBUS RTU (положение «INIT»).

2.4.4. Элементы коммутации

- 2.4.4.1. В EL-4015 имеются два разъема (вилки ECH381R-13P). Ответные части (розетки EC381V-13P) входят в комплект поставки.
- 2.4.4.2. Клеммы 12 (+Vs) и 13 (GND) предназначены для подключения внешнего источника питания.
- 2.4.4.3. Клеммы 10 (DATA+) и 11 (DATA-) предназначены для подключения EL-4015 к ПК через преобразователь интерфейса (модуль «ЭЛЕМЕР-EL-4020RS»).
- 2.4.4.4. Клеммы 1-6,14-25 (RTD0+, RTD0-, COM0...RTD7+, RTD7-, COM7) предназначены для подключения TC.

2.4.5. Функциональная схема

2.4.5.1. Функциональная схема EL-4015 приведена на рисунке Б.1 приложения Б. Пользователю предоставляется возможность управлять функционированием EL-4015, устанавливая соответствующие значения параметров настройки и работы, используя ПК.

2.4.6. Общие принципы работы

2.4.6.1. Принцип работы EL-4015 состоит в усилении и преобразовании в цифровой код аналоговых сигналов от устройств, подключенных к каналам EL-4015, и передачи информации об измеренных значениях температуры или сопротивления ПК через интерфейс RS 485 с использованием протокола обмена MODBUS RTU.

- 2.4.6.2. Сигналы с входов EL-4015 подаются на вход АЦП и преобразуются в цифровой 24—разрядный код. АЦП имеет встроенный цифровой фильтр и усилитель с управляемым коэффициентом усиления. Цифровой сигнал с выхода АЦП поступает через гальваническую развязку в процессор. Процессор выполняет следующие функции:
 - управление режимом работы каналов;
 - управление режимом работы АЦП;
 - масштабирование сигналов с учетом градуировочных коэффициентов;
 - компенсацию нелинейности ТС;
 - реализацию протокола обмена через интерфейс RS 485;
 - управление работой индикатора «Обмен»;
 - контроль состояния переключателя.
- 2.4.6.3. Подключение ТС к EL-4015 осуществляется в соответствии с рисунком Б.2 приложения Б. При двухпроводной схеме подключения (позиция 1 рисунка Б.2) EL-4015 задает ток на ТС и измеряет величину падения напряжения на нем. При фиксированном токе падение напряжения прямо пропорционально сопротивлению первичного преобразователя, которое пересчитывается в значение температуры. Этот вариант может быть использован в том случае, когда длина проводов, идущих к первичному преобразователю, не превышает нескольких метров. В общем случае необходимо учитывать сопротивление проводов, которое может быть сравнимо с сопротивлением первичного преобразователя. Для этого используют трехпроводную схему подключения (позиция 2 рисунка Б.2).
- 2.4.6.4. Работа EL-4015 происходит под управлением ПК. Если необходимо послать несколько команд подряд, то для четкого опознавания EL-4015 окончания одного запроса рекомендуется перед посылкой следующей команды выдерживать паузы, значения которых приведены в таблице 2.1.

Таблица 2.1 – Рекомендуемое значение пауз

Пауза, мс
80
40
20
10
5
3
2
1

2.4.6.5. Зависимость длины линии связи и числа EL-4015 на линии от скорости обмена приведена в таблице 2.2.

Таблица 2.2 – Зависимость длины линии связи от скорости обмена

Скорость обмена, бод	Количество EL-4015	Длина линии связи, м
115200	32	500
57600	32	700
38400	32	900
19200	32	1200
9600	32	1200
4800	32	1200
2400	32	1200
1200	32	1200

2.4.6.6. Описание регистров приведено в приложении В.

2.5. Настройка

- 2.5.1. Настройка EL-4015 осуществляется с помощью программы «EL-4000 Config» и позволяет:
 - назначать сетевой адрес EL-4015;
 - устанавливать тип паритета при обмене (таблица В.3.2);
 - устанавливать скорость обмена;
 - устанавливать тип протокола обмена (таблица В.3.3);
 - устанавливать тип и диапазон входного сигнала для каждого канала;
 - устанавливать параметры АЦП преобразования;
 - градуировать измерительные каналы.

Параметры настройки хранятся в энергонезависимой памяти EL-4015 и сохраняются при выключенном питании.

- 2.5.2. Порядок настройки EL-4015
- 2.5.2.1. Подключить один EL-4015 (без панели для крепления на DIN-рейку) к ПК в соответствии с рисунком Г.1 приложения Г.

Внимание! Подключение производить при выключенном внешнем источнике питания EL-4015.

- 2.5.2.2. Подключить ко всем входам резисторы 100 Ом по двухпроводной схеме (позиция 1 рисунка Б.2 приложения Б).
- 2.5.2.3 Перевести переключатель, расположенный на задней панели EL-4015, в положение «INIT».

- 2.5.2.4. Подать на EL-4015 питание от внешнего источника постоянного тока напряжением 24 В.
 - 2.5.2.5. Запустить на ПК программу «EL-4000 Config».
 - 2.5.2.6. Выбрать СОМ-порт ПК для связи с EL-4015.
- 2.5.2.7. Установить значения по умолчанию для параметров СОМ-порта.
- 2.5.2.8. Запустить процедуру поиска сетевого адреса настраиваемого EL-4015, нажав кнопку «Начать поиск». В «дереве» СОМ-портов в левой панели программы должна появиться строка с обозначением типа прибора.
- 2.5.2.9. Открыть окно настройки параметров EL-4015, нажав на его обозначении в левой панели программы. При этом программа осуществит чтение всех параметров EL-4015.
 - 2.5.2.10. Перейти на закладку «Параметры каналов».
- 2.5.2.11. Нажать кнопку «DEFAULT_SET» (запись заводских установок параметров).
 - 2.5.2.12. Нажать кнопку «Обмен».
- 2.5.2.13. Убедиться, что измеренные значения по всем каналам (строка «Измеренная величина Value») примерно равны 0 °C.
 - 2.5.2.14. Нажать кнопку «Стоп».
- 2.5.2.15. Установить параметры EL-4015 в соответствии с применяемыми типами входных сигналов и с логикой работы системы удаленного управления технологическими процессами.
 - 2.5.2.16. Выключить питание.
- 2.5.2.17. Перевести переключатель, расположенный на задней панели EL-4015, в положение «NORM».

2.6. Маркировка и пломбирование

- 2.6.1. Маркировка EL-4015 производится в соответствии с ГОСТ 26828-86 E, ГОСТ 9181-74E и чертежом НКГЖ.424229.002СБ.
- 2.6.2. Способ нанесения маркировки наклеивание (с помощью 2-х сторонней клеевой ленты) таблички, выполненной на пленке методом шелкографии, обеспечивающей сохранность маркировки в течении всего срока эксплуатации.
- 2.6.3. Пломбирование производится на предприятии—изготовителе путем наклеивания гарантийной пломбы на корпус EL-4015.

2.7 Упаковка

2.7.1. Упаковка производится в соответствии с ГОСТ 23170-78 E, ГОСТ 9181-74 E и обеспечивает полную сохраняемость EL-4015.

3. ИСПОЛЬЗОВАНИЕ ИЗДЕЛИЯ ПО НАЗНАЧЕНИЮ

3.1. Подготовка изделия к использованию

3.1.1. Указания мер безопасности

- 3.1.1.1. По способу защиты человека от поражения электрическим током EL-4015 соответствует классу III по ГОСТ 12.2.007.0-75 и удовлетворяет требованиям безопасности в соответствии с ГОСТ Р 52319-2005.
- 3.1.1.2. При эксплуатации EL-4015 необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил технической эксплуатации электроустановок потребителей» и «Правил техники безопасности при эксплуатации электроустановок потребителей» и «Правил устройства электроустановок. ПУЭ», утвержденных Госэнергонадзором, а также руководствоваться указаниями инструкций по технике безопасности, действующих на объектах эксплуатации EL-4015.
- 3.1.1.3. Подключение EL-4015 к электрической схеме должно осуществляться в соответствии с маркировкой EL-4015 и при выключенном источнике постоянного тока.
- 3.1.1.4. При эксплуатации EL-4015 должны выполняться требования техники безопасности, изложенные в документации на средства измерений и оборудование, в комплекте с которыми они работают.
- 3.1.1.5. Устранение дефектов, подключение внешних кабелей, монтаж и отсоединение EL-4015 должны осуществляться при выключенном питании

3.1.2. Внешний осмотр

3.1.2.1. При внешнем осмотре устанавливают отсутствие механических повреждений, соответствие маркировки, проверяют комплектность.

При наличии дефектов, влияющих на работоспособность EL-4015, несоответствия комплектности и маркировки определяют возможность дальнейшего его применения.

3.1.2.2. У каждого EL-4015 проверяют наличие руководства по эксплуатации с отметкой ОТК.

3.1.3. Монтаж изделия

- 3.1.3.1. Установить EL-4015 на объекте с помощью крепежной панели на DIN-рейку в соответствии с рисунками Д.1 и Д.2 приложения Д. Порядок установки на DIN-рейку:
 - закрепить панель крепления (из комплекта поставки) на DIN-рейке (позиция 1 рисунка Д.1);
 - с помощью двух невыпадающих винтов закрепить EL-4015 на панели (позиция 2 рисунка Д.1).

Демонтаж осуществляется в обратной последовательности.

3.1.3.2. EL-4015 можно крепить один сверху другого с использованием невыпадающих винтов в соответствии с рисунком Д.3 приложения Д.

3.2. Использование изделия

- 3.2.1. Произвести настройку EL-4015 в соответствии с п. 2.5.
- 3.2.2. Установить EL-4015 на объекте управления с помощью крепежной панели на DIN-рейку (п. 3.1.3).
 - 3.2.3. Подключить EL-4015 к TC.
- 3.2.4. Подключить EL-4015 к ПК с помощью преобразователя интерфейса «ЭЛЕМЕР-EL-4020RS» и к источнику питания в соответствии с рисунком Г.2 приложения Г.

Подключение производить при выключенном питании EL-4015.

Резисторы сопротивлением 120 Ом на концах интерфейсной линии предназначены для согласования линии связи.

4. МЕТОДИКА ПОВЕРКИ

- 4.1. Поверку EL-4015 проводят органы Государственной метрологической службы или другие аккредитованные по ПР 50.2.014-2003 на право поверки организации. Требования к организации, порядку проведения поверки и форма представления результатов поверки определяются ПР 50.2.006-94 «ГСИ. Поверка средств измерений. Организация и порядок проведения».
 - 4.2. Межповерочный интервал составляет два года.
- 4.3. Настоящая методика может быть применена для калибровки EL-4015.
 - 4.4. Операции и средства поверки
- 4.4.1. При проведении поверки должны быть выполнены операции, указанные в таблице 4.1.

Таблица 4.1

100,	ица т. і			
Nº	0	Номер	Обязательность проведения операции	
п/п	Операция поверки	пункта	первичная	периодическая
			поверка	поверка
1	Внешний осмотр	4.7.1	Да	Да
2	Опробование	4.7.2	Да	Да
3	Проверка электрической прочности изоляции	4.7.3	Да	Нет
4	Проверка электрического сопротивления изоляции	4.7.4	Да	Нет
5	Определение значений основных погрешностей изме- рительных каналов EL-4015*	4.7.5	Да	Да
5.1	Определение значений основных погрешностей измерительных каналов EL-4015 с использованием комплекса автоматизированного многоканального поверочного «ЭЛЕМЕР-АМК-310»*	4.7.6	Да	Да
6	Определение значений основных погрешностей измерительного канала, сконфигурированного под конкретный тип входного сигнала	4.8	Да	Да
7	Обработка результатов поверки	4.9	Да	Да
8	Оформление результатов поверки	4.10	Да	Да
При	Примечание – * Поверку проводят в соответствии с п. 4.7.5 или 4.7.6.			

4.4.2. При проведении поверки применяют основные и вспомогательные средства поверки, указанные в таблице 4.2.

Таблица 4.2

№ п/п	Спелства повелки	Основные метрологические и технические характеристики средств поверки
1	Комплекс автоматизированный многоканальный поверочный «ЭЛЕМЕР-АМК-310» ТУ 4381-073-13282997-07	Значения воспроизведения сопротивления: 0, 40, 80, 160, 320 Ом; основная погрешность: ±(1·10 ⁻⁵ ·R+1·10 ⁻³) Ом
2	Магазин сопротивлений Р4831 ГОСТ 23737-79	Класс точности 0,02
3	Установка для проверки электрической безопасности GPI-745A	Диапазон выходных напряжений: 100…5000 В.
4	Мегаомметр Ф4102/1-1М ТУ 25-7534.005-87	Диапазон измерения сопротивления: 020000 МОм.
5	Персональный компьютер IBM/PC с программным обеспечением	Стандартная конфигурация с ОС Windows ME (XP), программа «EL-4000 Config» НКГЖ.00315-01
	n	

Примечания

4.5. Требования безопасности

4.5.1. При поверке выполняют требования техники безопасности, изложенные в документации на применяемые средства поверки и оборудование.

4.6. Условия поверки и подготовка к ней

4.6.1. При проведении поверки должны соблюдаться следующие условия:

– температура окружающего воздуха, °C	20±5;
– относительная влажность воздуха, %	30 - 80;
– атмосферное давление, кПа (мм рт.ст.)	84,0 - 106,7
	(630 - 800);
напрауение питания R	24+0.48

- напряжение питания, В– вибрация, тряска и удары, влияющие на работу приборов и
- EL-4015 в процессе поверки, должны отсутствовать;

 внешние электрические и магнитные поля должны отсутствовать или находиться в пределах, не влияющих на работу EL-4015.

¹ Предприятием-изготовителем средства поверки по п.1 является НПП «ЭЛЕМЕР».

² Все перечисленные в таблице 4.2 средства измерения должны иметь действующие свидетельства о поверке.

³ Допускается применять отдельные, вновь разработанные или находящиеся в применении средства поверки и оборудование, по своим характеристикам не уступающие указанным в настоящей методике поверки.

- 4.6.2. Операции, проводимые со средствами поверки и поверяемым EL-4015, должны соответствовать указаниям, приведенным в эксплуатационной документации.
- 4.6.3. Перед проведением поверки выполняют следующие подготовительные работы:
 - EL-4015 выдерживают при указанной температуре не менее 30 мин;
 - средства поверки подготавливают к работе в соответствии с эксплуатационной документацией.
 - 4.7. Проведение поверки
- 4.7.1. Внешний осмотр поверяемого EL-4015 осуществляют в соответствии с п. 3.1.2 настоящего руководства по эксплуатации.
- 4.7.2. Опробование поверяемого EL-4015 состоит в проверке его работоспособности в соответствии с п. 2.5 и п. 3.2 настоящего руководства по эксплуатации.
 - 4.7.3. Проверка электрической прочности изоляции
- 4.7.3.1. Проверку электрической прочности изоляции производят на установке GPI-745A.
- 4.7.3.2. Испытательное напряжение следует повышать плавно, начиная с нуля до испытательного в течение 5–10 с. Уменьшение напряжения до нуля должно производиться с такой же скоростью.
- 4.7.3.3. Значения испытательного напряжения для различных цепей EL-4015 указаны в таблице 4.3.

Таблица 4.3

		Группы контактов, между которыми подключаются		
Испытательное	Проверяемые цепи	зажимы установки пробойной		
напряжение, В		Силовой	Зажим	
		зажим	заземления	
	Цепи измерительных			
3000	каналов			
постоянного	<u>относительно</u>	1–6, 14–25	10–13	
тока	цепей питания и			
	интерфейса			

Изоляцию выдерживают под действием испытательного напряжения в течение 1 мин. Затем напряжение плавно снижают до нуля, после чего испытательную установку отключают.

Во время проверки не должно происходить пробоев и поверхностного перекрытия изоляции.

- 4.7.4 Проверка электрического сопротивления изоляции
- 4.7.4.1. Проверку электрического сопротивления изоляции EL-4015 производят мегаомметром Ф 4102/1–1М или другим прибором для измерения электрического сопротивления с рабочим напряжением не более 500 В.

Отсчет показаний производят по истечении 1 мин после приложения напряжения между контактами в соответствии с таблицей 4.4.

Таблица 4.4

	Испытательное	_	Группы контактов, между которыми подключаются		
		Проверяемые цепи	зажимы м	егаомметра	
	напряжение, В		Силовой	Зажим	
			зажим	заземления	
		Цепи измерительных			
	500	каналов			
	постоянного	<u>относительно</u>	1–6, 14–25	10–13	
	тока	цепей питания и			
		интерфейса			

Сопротивление изоляции не должно быть менее 20 МОм.

- 4.7.5. Определение значений основных погрешностей EL-4015
- 4.7.5.1. Определение значений основных погрешностей EL-4015 в конфигурации с TC проводят в следующей последовательности:
- 1) подключают EL-4015 к модулю питания «ЭЛЕМЕР-EL-4001PWR», модулю преобразователя интерфейса «ЭЛЕМЕР-EL-4020RS» и включают модуль питания «ЭЛЕМЕР-EL-4001PWR»;
- 2) подключают магазин сопротивлений к поверяемому каналу EL-4015 по трехпроводной схеме в соответствии с рисунком 4.1;

Модуль аналогового ввода «ЭЛЕМЕР-EL-4015». Схема подключения при поверке

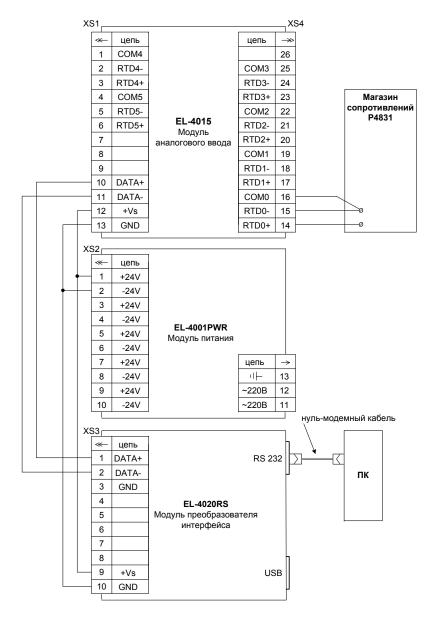


Рисунок 4.1

- 3) на ПК запускают программу «EL-4000 Config». С помощью программы «EL-4000 Config» устанавливают заводские значения параметров, нажав кнопку «DEFAULT SET» (при поверке остальных каналов данную операцию проводить не нужно);
- 4) с помощью программы «EL-4000 Config» устанавливают тип первичного преобразователя («Тип датчика») 50П;
- 5) устанавливают на магазине сопротивлений значение сопротивления, равное 40 Ом (по ГОСТ Р 8.25-2006 или ГОСТ 6651-94);
- 6) считывают на экране ПК установившееся значение измеряемой величины A_{usm} на поверяемом канале;
- 7) определяют значение абсолютной погрешности ΔA как разность измеренного значения $A_{\it usm}$ и действительного значения $A_{\it d}$ измеряемой величины по формуле

$$\Delta A = A_{\mu_{3M}} - A_{\partial} \tag{4.1}$$

- 8) повторяют операции по п. 4.7.5.1.5)...4.7.5.1.7), поочередно устанавливая на магазине сопротивлений значения сопротивления, равные 79,11 и 150,315 (150,335) Ом;
- 9) устанавливают тип первичного преобразователя («Тип датчика») 100П;
- 10) повторяют операции по п. 4.7.5.1.5)...4.7.5.1.7), поочередно устанавливая на магазине сопротивлений значения сопротивления, равные 158,22 (158,23) и 300,63 (300,67) Ом;
- 11) устанавливают тип первичного преобразователя («Тип датчика») Pt1000:
- 12) повторяют операции по п. 4.7.5.1.5)...4.7.5.1.7), поочередно устанавливая на магазине сопротивлений значения сопротивления, равные 1573,3 и 2974,9 Ом:
- 13) повторяют операции по п. 4.7.5.1.4)...4.7.5.1.12) для остальных каналов.
- 4.7.6. Определение значений основных погрешностей измерительных каналов EL-4015 с использованием комплекса автоматизированного многоканального поверочного «ЭЛЕМЕР-АМК-310» проводят в следующей последовательности:
- 1) подключают EL-4015 к модулю питания «ЭЛЕМЕР-EL-4001PWR», модулю преобразователя интерфейса «ЭЛЕМЕР-EL-4020RS» и включают модуль питания «ЭЛЕМЕР-EL-4001PWR»;
 - 2) выдерживают EL-4015 во включенном состоянии в течение 60 мин;
- 3) подключают испытуемый EL-4015 к «ЭЛЕМЕР-АМК-310» в соответствии с настоящим руководством по эксплуатации и руководством по эксплуатации «ЭЛЕМЕР-АМК-310»;

- 4) запускают на ПК программу «Universal Calibrator» из комплекта «ЭЛЕМЕР-АМК-310»;
- 5) в программе «Universal Calibrator» переходят на закладку «Проверка», с помощью левой кнопки «мыши» устанавливают метки « $\sqrt{}$ » для всех каналов, метки « $\sqrt{}$ » для всех поверяемых точек и нажимают кнопку «Проверка»;
- 6) по окончании измерений программа автоматически производит обработку результатов измерений и на экране монитора ПК отображается измеренное значение величины и основная абсолютная погрешность измеряемой величины;
- 7) основная абсолютная погрешность измерений должна находиться в пределах, указанных в таблице 4.5.
- 4.8. Определение значений основных погрешностей измерительного канала, сконфигурированного под конкретный тип входного сигнала
- 4.8.1. Основную погрешность EL-4015 для конфигурации с TC (п. 2.2.1, таблица 2.1) определяют в точках, соответствующих 5, 25, 50, 75, 95 % диапазона измерений.

Номинальные статические характеристики преобразования ТС должны соответствовать ГОСТ Р 8.625-2006 (ГОСТ 6651-94).

Измерения для определения основных погрешностей измерительного канала EL-4015 с указанной конфигурацией проводят по методике, изложенной в п. 4.7.5.1.

Рассчитывают основную погрешность γ_1 в каждой поверяемой точке по формуле

$$\gamma_1 = \frac{A_{usm} - A_o}{A_o - A} \cdot 100\%, \tag{4.2}$$

где A_H , A_g — нижнее и верхнее предельные значения диапазона измерений, указанных в таблице 2.1;

 A_{∂} – действительно значение величины в поверяемой точке;

 $A_{uзм}$ – измеренное значение величины.

Наибольшее из рассчитанных значений основной погрешности не должно превышать соответствующего значения, указанного в таблице 2.1.

- 4.9. Обработка результатов поверки
- 4.9.1. При поверке EL-4015 значения основных абсолютных погрешностей, вычисленных по формуле (4.1) в каждой поверяемой точке, не должны превышать допускаемых основных абсолютных погрешностей, указанных в таблице 4.5.

Таблица 4.5

	Пистором	Поверяемая точка			Значение основной	
Тип первичного	Диапазон измерений,		On	И	абсолютной по	огрешности, °С
преобразователя	ос останавления,	°C	ГОСТ Р	ГОСТ	для инден	кса заказа
	C		8.625-2006	6651-94	Α	В
	-50+200	-50	40,00	40,00	0,25	0,5
50∏		150	79,110	79,115	0,25	0,5
	-200+600	550	150,315	150,335	0,8	1,6
100Π	-50+200	150	158,22	158,23	0,25	0,5
	-200+600	550	300,63	300,67	0,8	1,6
Pt1000*	-50+200	150	1573,30	1573,30	0,25	0,5
	-200+600	550	2974,90	2974,90	0,8	1,6
Примечани	е – * При на	личии	и диапазона.			

4.9.2. При поверке EL-4015 с помощью комплекса автоматизированного многоканального поверочного «ЭЛЕМЕР-АМК-310» значения основных абсолютных погрешностей в каждой поверяемой точке, не должны превышать допускаемых основных абсолютных погрешностей, указанных в таблице 4.6.

Таблица 4.6

Входн	ые параметрь	Пределы допускаемой основной			
Тип первичного	Поверяемая точка		абсолютной погрешности по измеряемой величине, °С		
преобразователя			для индекса заказа		
	Ом	°C	Α	В	
50 П	40,3±0,101	-48,55±0,45	±0,25	±0,5	
	80,6±0,202	157,90±1,06	±0,25	±0,5	
100 П	158,0±0,395	149,42±1,04	±0,25	±0,5	
10011	316,0±0,790	597±2,00	±0,80	±1,6	

- 4.10. Оформление результатов поверки
- 4.10.1. Положительные результаты поверки EL-4015 оформляют свидетельством о государственной поверке установленной формы по ПР 50.2.006-94 или отметкой в РЭ с нанесением оттиска поверительного клейма.
- 4.10.1.1. Результаты поверки EL-4015, сконфигурированного под конкретные входные сигналы, оформляют свидетельством о государственной поверке установленной формы по ПР 50.2.006-94 с указанием результатов поверки на его оборотной стороне (или протоколом произвольной формы).

Внимание! В этом случае не допускается использовать EL-4015 с другими конфигурациями.

- 4.10.2. При отрицательных результатах поверки EL-4015 не допускается к применению до выяснения причин неисправностей и их устранения.
- 4.10.3. После устранения обнаруженных неисправностей проводят повторную поверку, результаты повторной поверки окончательные.

5. ПРАВИЛА ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ

- 5.1. EL-4015 транспортируется всеми видами транспорта в крытых транспортных средствах. Крепление тары в транспортных средствах должно производиться согласно правилам, действующим на соответствующих видах транспорта.
- 5.2. Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 50 до плюс 50 °C с соблюдением мер защиты от ударов и вибраций.
- 5.3. Условия хранения EL-4015 в транспортной таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150-69.

готовителя и г ГОСТ 15150-69	отребителя должны с	оответствовать	условиям 1 по		
	6. СВИДЕТЕЛЬСТВО	О О ПРИЕМКЕ			
номер № зательными тр	аналогового ввода « изготовлен ебованиями государст ой документацией и при	и принят в сооті венных стандар	ветствии с обя- тов, действую-		
<u>Класс точно</u>	сти (индекс заказа)		<u>A</u> □ B		
<u>Код климати</u>	ческого исполнения		C3 🗖 T4		
Начальник ОТК					
М.П.	(личная подпись)	(расшифровка поді	писи)		
	(год, месяц, ч	исло)			
6.2. Результа тельны.	аты первичной поверки (к	калибровки) EL-40)15 положи-		
	Дата поверки				
М.П.	Поверитель(фамил	ия и подпись)			
7. 0	СВИДЕТЕЛЬСТВО ОБ	УПАКОВЫВАНІ	ИИ		
номер № ятием «ЭЛЕМЕ	аналогового ввода у упакован научи ЕР» согласно требован ической документации.	но-производствен ниям, предусмот	ным предпри-		
(должность)	(личная подпись)	(расшифровк	а подписи)		

(год, месяц, число)

8. РЕСУРСЫ, СРОКИ СЛУЖБЫ И ХРАНЕНИЯ И ГАРАНТИИ ИЗГОТОВИТЕЛЯ (ПОСТАВЩИКА)

8.1. Ресурс EL-4015 — 100 000 ч в течение срока службы 12 лет, в том числе срок хранения — 6 месяцев с момента изготовления в упаковке изготовителя в складском помещении.

Указанный ресурс, срок службы и срок хранения действительны при соблюдении потребителем требований действующей эксплуатационной документации.

- 8.2. Гарантийный срок 5 лет со дня продажи EL-4015.
- 8.3. В случае потери работоспособности EL-4015 ремонт производится на предприятии—изготовителе по адресу:

124460, Москва, Зеленоград, корп. 1145, н.п. 1, НПП «ЭЛЕМЕР»

Тел.: (495) 925-51-47, Факс: (499) 710-00-01 E-mail: elemer@elemer.ru

8.3.1. Без гарантийного талона с заполненной ремонтной картой EL-4015 в ремонт не принимается.

9. ОСОБЫЕ ОТМЕТКИ

,	риодическои поверки (калиоровки) ЕL-4015 поло-
жительны.	-
	Дата поверки
М.П.	
	Поверитель
	(фамилия и подпись)
Результаты пер жительны.	риодической поверки (калибровки) EL-4015 поло-
	Дата поверки
М.П.	
	Поверитель
	(фамилия и подпись)

Приложение А Модуль аналогового ввода «ЭЛЕМЕР-EL-4015». Габаритные и монтажные размеры

Рисунок А.1

Продолжение приложения А Модуль аналогового ввода «ЭЛЕМЕР-EL-4015». Вид передней панели

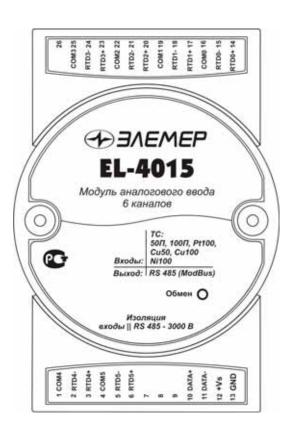


Рисунок А.2

Продолжение приложения А Модуль аналогового ввода «ЭЛЕМЕР-EL-4015». Вид задней панели

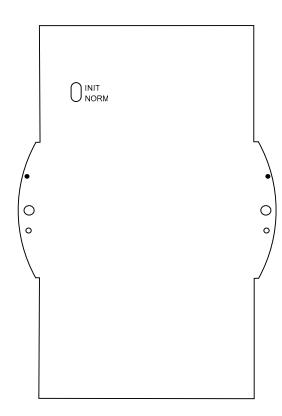


Рисунок А.3

Приложение Б Модуль аналогового ввода «ЭЛЕМЕР-EL-4015». Функциональная схема

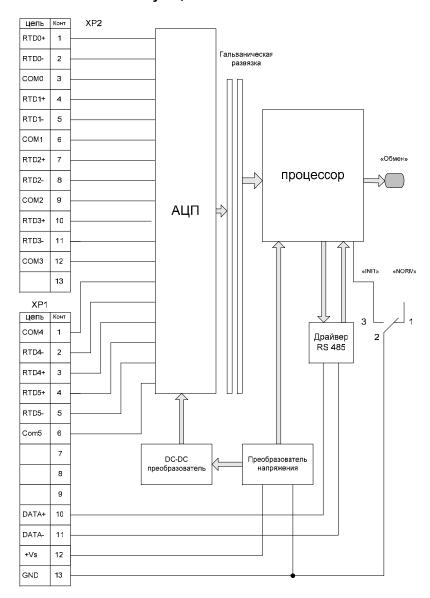
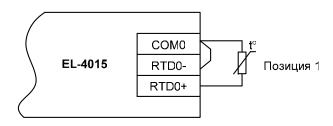



Рисунок Б.1

Продолжение приложения Б Модуль аналогового ввода «ЭЛЕМЕР-EL-4015». Схема подключения ТС

Двухпроводная схема подключения

Трехпроводная схема подключения (длина и марка проводов должны быть одинаковы)

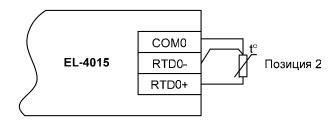


Рисунок Б.2

ПРИЛОЖЕНИЕ В Модуль аналогового ввода «ЭЛЕМЕР-EL-4015». Описание регистров

В.1 Параметры EL-4015

В.1.1. Диапазоны измерений и градуировки приведены в таблице В.1.

Таблица В.1

№ диапазона	Предел измерений, Ом		Точка градуировки
градуировки	нижний	верхний	по диапазону
0	0	6810	6000
1	0	3405,0	3000
2	0	1702,5	1200
3	0	851,3	600
4	0	425,6	300
5	0	212,8	150
6	0	106,4	80
7	0	53,2	40

Для измерений температуры с помощью ТС всех типов, указанных в таблице В.2, используются только два диапазона градуировки: №1 и № 4. Таким образом для работы со всеми типами ТС достаточно провести градуировку по указанным диапазонам.

Примечание – после градуировки EL-4015 должен быть поверен.

В.1.2. Типы датчиков приведены в таблице В.2.

Таблица В.2

Ма потичка		Пределы пре для Valı		No supposuo
№ датчика	Входной сигнал			№ диапазона
в регистре	(Тип датчика)	НИЖНИЙ	верхний	градуировки
		(MinRange)	(MaxRange)	
0x20	Pt100 (-50150 °C)	-50 °C	150 °C	4
0x21	Pt100 (0100 °C)	0 °C	100 °C	4
0x22	Pt100 (0200 °C)	0 °C	200 °C	4
0x23	Pt100 (0400 °C)	0 °C	400 °C	4
0x24	Pt100 (-200200 °C)	-200 °C	200 °C	4
0x25	100∏ (-50150 °C)	-50 °C	150 °C	4
0x26	100П (0100 °C)	0 °C	100 °C	4
0x27	100П (0200 °C)	0 °C	200 °C	4
0x28	100П (0400 °C)	0 °C	400 °C	4
0x29	100П (-200200 °C)	-200 °C	200 °C	4
0x2A	Pt1000 (-40160 °C)	-40 °C	160 °C	1
0x2B	Ni100 (-60180 °C)	-60 °C	180 °C	4
0x2C	Ni100 (-60100 °C)	-60 °C	100 °C	4
0x2D	Ni100 (0100 °C)	0 °C	100 °C	4
0x2E	Pt100 (-200600 °C)	-200 °C	600 °C	4
0x2F	100П (-200600 °C)	-200 °C	600 °C	4
0x30	50П (-200600 °C)	-200 °C	600 °C	4
0x31	46П Гр21 (-200600 °C)	-200 °C	600 °C	4
0x32	100M 1,428 (-50200 °C)	-50 °C	200 °C	4
0x33	50M 1,428 (-50200 °C)	-50 °C	200 °C	4
0x34	100M 1,426 (-50200 °C)	-50 °C	200 °C	4
0x35	50M 1,426 (-50200 °C)	-50 °C	200 °C	4
0x36	53M 1,426 Γp23 (-50180 °C)	-50 °C	180 °C	4
0x37	R 6810 Om	-67	6700	0
0x38	R 3405 Ом	-33	3300	1
0x39	R 1702 Ом	-16	1600	2
0x3A	R 851 Ом	-7	800	3
0x3B	R 425 Ом	-4	400	4
0x3C	R 212 OM	-2	200	5
0x3D	R 106 Ом	-1	100	6
0x3E	R_53_Ом	-0,5	50	7

В.1.3. Описание регистров приведено в таблицах В.3 – В.6.

Таблица В.3 – Пространство «HOLD» регистров

таолица	Б.3 – Прост <u>р</u>	ранство «HOLD» ре	егистров				
Адрес регистра	Регистр	Наименование параметра	Команда чтения	Коман- да записи	Значение по умол- чанию	Min	Max
0x0000	ValueNorm[0]	Целочисленное представление измеряемой величины канала 0	0x03, 0x04	_	_	_	_
0x0001	ValueNorm[1]	Целочисленное представление измеряемой величины канала 1	0x03, 0x04	I	ı	_	-
0x0002	ValueNorm[2]	Целочисленное представление измеряемой величины канала 2	0x03, 0x04	ı	-	_	-
0x0003	ValueNorm[3]	Целочисленное представление измеряемой величины канала 3	0x03, 0x04	I	I	ı	ı
0x0004	ValueNorm[4]	Целочисленное представление измеряемой величины канала 4	0x03, 0x04	ı	-	_	ı
0x0005	ValueNorm[5]	Целочисленное представление измеряемой величины канала 5	0x03, 0x04	I	I	ı	ı
0x00C8	SensType[0]	Тип датчика канала 0	0x03, 0x04	0x10	0x0023	0x0020	0x0036
0x00C9	SensType[1]	Тип датчика канала 1	0x03, 0x04	0x10	0x0023	0x0020	0x0036
0x00CA	SensType[2]	Тип датчика канала 2	0x03, 0x04	0x10	0x0023	0x0020	0x0036
0x00CB	SensType[3]	Тип датчика канала 3	0x03, 0x04	0x10	0x0023	0x0020	0x0036
0x00CC	SensType[4]	Тип датчика канала 4	0x03, 0x04	0x10	0x0023	0x0020	0x0036
0x00CD	SensType[5]	Тип датчика канала 5	0x03, 0x04	0x10	0x0023	0x0020	0x0036
0x00D2	MODEL_HI	Молопи приборо	0x03, 0x04	0x10	0x4015	0x0000	0xFFFF
0x00D3	MODEL_Low	Модель прибора	0x03, 0x04	0x10	0x0000	0x0000	0xFFFF
0x00D4	VER_HI	Вариант исполнения	0x03, 0x04	0x10	0x0000	0x0000	0xFFFF
0x00D5	VER_Low	EL-4015	0x03, 0x04	0x10	0x0000	0x0000	0xFFFF
0x00DC	ENCN	Разрешение работы каналов	0x03, 0x04	0x10	0x00FF	0x0000	0x00FF
0x0400	TYPE_DEVICE	Тип прибора	0x03, 0x04	_	59	_	_
0x0408	ADDRESS	Сетевой адрес	0x03, 0x04	0x10	0x0001	0x0001	0x00FF
0x0409	RATE	Скорость обмена*	0x03, 0x04	0x10	0x0006	0x0003	0x0009
0x040A	PARITY	Паритет**	0x03, 0x04	0x10	0x0000	0x0000	0x0002
0x040B	PROTOCOL	Тип протокола***	0x03, 0x04	0x10	0x0001	0x0000	0x0001

Продолжение таблицы В.3

Адрес регистра	ение таблиць Регистр	Наименование параметра	Команда чтения	Команда записи	Значение по умол-	Min	Max
		Параметра	чтения	записи	чанию		
0x040E					0x3430	_	_
0x040F					0x3539	1	_
0x0410					0x2020	_	_
0x0411	TEXT	Текст пользователя	0x03, 0x04	0x10	0x2020	_	_
0x0412		(кодировка Win 1251)			0x2020	-	_
0x0413					0x2020	1	_
0x0414					0x2020	_	_
0x0415					0x2020	1	_
0x0416	BLINK	Включение светодио- да для идентификации EL-4015****	0x03, 0x04	0x10	-	-	-
0x0417	LATCH	Защелкивание син- хронных данных****	0x03, 0x04	0x10	_	ı	-
0x0418	RESET	Перезапуск EL-4015	0x03, 0x04	0x10	_	-	_
0x0419	MODE_INIT	Режим INIT	0x03, 0x04	-	_	-	_
0x041B	DEFAULT_SET	Запись заводских установок параметров	0x03, 0x04	0x10	-	ı	_
0x041C	VERIFY_CLB	Проверка на совпадение копии градуировочных коэффициентов	0x03, 0x04	0x10	-	-	-
0x041D	RESTORE_CLB	Восстановление заводских градуировочных коэффициентов	0x03, 0x04	0x10	-	ı	-
0x0500	Value_Low[0]	Измеряемая величина	0x03,0x04				
0x0501	Value_Hi [0]	канала 0	0x03,0x04	_	_	_	_
0x0502	Value_Low[1]	Измеряемая величина	0x03,0x04				
0x0503	Value_Hi[1]	канала 1	0.000,0.004	_	_		
0x0504	Value_Low[2]	Измеряемая величина	0x03,0x04				
0x0505	Value_Hi[2]	канала 2	0x03,0x04	_	_	_	_
0x0506	Value_Low[3]	Измеряемая величина	0 00 0 04				
0x0507	Value_Hi[3]	канала 3	0x03,0x04	_	_	_	_
0x0508	Value_Low[4]	Измеряемая величина	0.00.0.0				
0x0509	Value_Hi[4]	канала 4	0x03,0x04	_	_	_	_
0x050A	Value_Low[5]	Измеряемаяя величина	0.00.0.0.			_	_
0x050B	Value_Hi[5]	канала 5	0x03,0x04	_	_		

Адрес регистра	Регистр	Наименование	Команда чтения да записи		Значение по умол-	Min	Max
регистра	-	параметра			чанию		
0x0510	ValueAttr_Low [0]	Измеряемая вели- чина канала 0 с	0x03,0x04	_		_	_
0x0511	ValueAttr_Hi[0]	атрибутами					
0x0512	ValueError[0]	Статус измеряемого канала 0		_	_	-	-
0x0513	ValueTime[0]	Время измерения канала 0	0x03, 0x04	_	_	_	_
0x0514	ValueAttr_Low[1]	Измеряемая вели-	000 004			_	
0x0515	ValueAttr_Hi[1]	чина канала 1 с атрибутами	0x03,0x04	_	_		_
0x0516	ValueError[1]	Статус измеряемо- го канала 1	0x03, 0x04	_	_	1	_
0x0517	ValueTime[1]	Время измерения канала 1	0x03, 0x04	_	-	-	_
0x0518	ValueAttr_Low[2]	Измеряемая вели- чина канала 2 с	0202 0204			-	
0x0519	ValueAttr_Hi[2]	атрибутами	0x03,0x04	_	_		_
0x051A	ValueError[2]	Статус измеряемо- го канала 2	0x03, 0x04	_	_	_	_
0x051B	ValueTime[2]	Время измерения канала 2	0x03, 0x04	_	_	_	_
0x051C	ValueAttr_Low[3]	Измеряемая вели-	0x03,0x04			_	
0x051D	ValueAttr_Hi[3]	чина канала 3 с атрибутами		_	_		_
0x051E	ValueError[3]	Статус измеряемо- го канала 3	0x03, 0x04	_	_	_	_
0x051F	ValueTime[3]	Время измерения канала 3	0x03, 0x04	_	_	-	_
0x0520	ValueAttr_Low[4]	Измеряемая вели-	0x03,0x04	_	_	_	
0x0521	ValueAttr_Hi[4]	чина канала 4 с атрибутами					_
0x0522	ValueError[4]	Статус измеряемо- го канала 4	0x03, 0x04	_	-	1	_
0x0523	ValueTime[4]	Время измерения канала 4	0x03, 0x04	_	_	_	_
0x0524	ValueAttr_Low[5]	Измеряемая вели-	0,02 0,04				
0x0525	ValueAttr_Hi[5]	чина канала 5 с атрибутами	0x03,0x04	_	_	_	_
0x0526	ValueError[5]	Статус измеряемо- го канала 5	0x03, 0x04	_	_	_	_
0x0527	ValueTime[5]	Время измерения канала 5	0x03, 0x04	_	_	_	_
0x0530	LatchValue_Low[0]	Защелкнутая	0,020,04				
0x0531	LatchValue_Hi[0]	измеряемая вели- чина канала 0	0x03,0x04	_	_	_	_

Продолжение таблицы В.3

Адрес регистра	Регистр	Наименование параметра	Команда чтения	Ко- манда записи	Значение по умол- чанию	Min	Max
0x0532	LatchValue_Low[1]	Защелкнутая изме-					
0x0533	LatchValue_Hi[1]	ряемая величина канала 1	0x03,0x04	ı	1	_	_
0x0534	LatchValue_Low[2]	Защелкнутая изме-					
0x0535	LatchValue_Hi[2]	ряемая величина канала 2	0x03,0x04	_	_	_	_
0x0536	LatchValue_Low[3]	Защелкнутая изме-					
0x0537	LatchValue_Hi[3]	ряемая величина канала 3	0x03,0x04	ı	1	_	_
0x0538	LatchValue_Low[4]	Защелкнутая изме-					
0x0539	LatchValue_Hi[4]	ряемая величина канала 4	0x03,0x04	ı	1	_	
0x053A	LatchValue_Low[5]	Защелкнутая изме-					
0x053B	LatchValue_Hi[5]	ряемая величина канала 5	0x03,0x04	_	_	_	_

Примечания

- 1 * Коды скоростей обмена EL-4015 приведены в таблице В.З.1.
 2 ** Коды паритета EL-4015 приведены в таблице В.З.2.
 3 *** Типы протокола EL-4015 приведены в таблице В.З.3.
 4 **** Запись любого числа вызывает действие.
 5 Low младший регистр, Hi старший регистр.

Таблица В.3.1 – Коды скоростей обмена

Значение, записываемое в регистр	Скорость обмена, бод
0x0003	1200
0x0004	2400
0x0005	4800
0x0006	9600
0x0007	19200
0x0008	38400
0x0009	57600
0x000A	115200

Таблица В.3.2 – Коды выбора типа паритета

Значение, записываемое в регистр	Тип паритета					
0x0000	Нет					
0x0001	Нечётный					
0x0002	Чётный					

Таблица В.3.3 – Коды выбора протокола

Значение, записываемое в регистр	Тип протокола
0x0000	MODBUS RTU
0x0001	UAIL(ELEMER)

Таблица В.4 – Параметры конфигурации

Адрес регистра	Регистр	Наименование параметра	Команда чтения	Команда записи	Значение по умол- чанию	Min	Max
0x0600	FADC	Частота измерений АЦП	0x03,0x04	0x10	0x000A	0x0001	0x000F
0x0601	dTSelfCalibADC	Период самокалибровки	0x03,0x04	0x10	0x0014	0x0000	0xFFFF
0x0602	GoSelfCalibADC	Провести самокалибровку	0x03,0x04	0x10	1	_	-
0x0613	RL_Low[0]	Сопротивление	0x03,0x04	0x10	0 ℃	-100 °C	100 °C
0x0614	RL_Hi[0]	линии для канала 0	0.000,0.004	0.00			100 C
0x0615	RL_Low[1]	Сопротивление линии для канала 1	0x03,0x04	0x10	0 ℃	-100 °C	100 °C
0x0616	RL_Hi[1]		0.005,0.004	0.00	Ö	-100 C	100 C
0x0617	RL_Low[2]	Сопротивление линии для	0x03,0x04	0x10	0 ℃	-100 °C	100 °C
0x0618	RL_Hi[2]	канала 2	0.005,0.004	UXTU	0 C	-100 C	100 C
0x0619	RL_Low[3]	Сопротивление линии для канала 3	0x03,0x04	0x10	0 ℃	-100 °C	100 °C
0x061A	RL_Hi[3]		0.005,0.004				100 C
0x061B	RL_Low[4]	Сопротивление линии для	0x03,0x04	0x10	0 ℃	-100 °C	100 °C
0x061C	RL_Hi[4]	канала 4	0.000,0.004	0.10	0.0	-100 C	100 C
0x061D	RL_Low[5]	Сопротивление линии для	0x03,0x04	0x10	0 ℃	-100 °C	100 °C
0x061E	RL_Hi[5]	канала 5	0.000,0.004	0.10	0	-100 C	100 C
0x0623	Offset_Low[0]	Смещение для	0x03,0x04	0x10	0	-1000	+1000
0x0624	Offset_Hi[0]	канала 0	0.000,0.004	0.10	0	-1000	1 1000
0x0625	Offset_Low[1]	Смещение для канала 1	0x03,0x04	0x10	0	-1000	+1000
0x0626	Offset_Hi[1]		0.005,0.004	0.00	O	-1000	+1000
0x0627	Offset_Low[2]	Смещение для канала 2	0x03,0x04	0x10	0	-1000	+1000
0x0628	Offset_Hi[2]		0,000,0004	0.10	0	-1000	. 1000
0x0629	Offset_Low[3]	Смещение для	0x03,0x04	0x10	0	-1000	+1000
0x062A	Offset_Hi[3]	канала 3	0,000,0004	0.10	0	-1000	. 1000
0x062B	Offset_Low[4]	Смещение для	0x03,0x04	0x10	0	-1000	+1000
0x062C	Offset_Hi[4]	канала 4	0,000,0004	0.10	U	31000	. 1000

Продолжение таблицы В.4

Адрес регистра	Регистр	Наименование параметра	Команда чтения	Команда записи	Значение по умол- чанию	Min	Max
0x062D	Offset_Low[5]	Смещение для	0x03,0x04	0x10	0	-1000	+1000
0x062E	Offset_Hi[5]	канала 5	0,000,000	OXIO	ŭ	1000	1000
0x641	NambAverage	Количество усреднений при градуировке	0x03,0x04	0x10	8	1	100
0x643	CalibOffset	Градуировка смещения на канале N	0x03,0x04	0x10	_	I	I
0x644	CalibSpan	Градуировка диапазона на канале N	0x03,0x04	0x10	_	I	I
0x645	DeviceError	Общие ошибки EL-4015	0x03,0x04	_	_	_	-
0x646	OffsetR0_Low[0]	Смещение R0 для канала 0	0x03,0x04 0x10	0×10	0 ℃	-100 °C	100 ℃
0x647	OffsetR0_Hi[0]			0.00			
0x648	OffsetR0_Low[1]	Смещение R0 для канала 1	0x03,0x04 0x	0x10	0 ℃	-100 °C	100 °C
0x649	OffsetR0_Hi[1]		0.003,0.004	0.00	0.0	-100 C	100 C
0x64A	OffsetR0_Low[2]	Смещение R0	0x03,0x04	4 0x10	0 ℃	-100 °C	100 °C
0x64B	OffsetR0_Hi[2]	для канала 2	0203,0204	0.10	0.0	-100 C	100
0x64C	OffsetR0_Low[3]	Смещение R0	0x03,0x04	0x10	0 ℃	-100 °C	100 °C
0x64D	OffsetR0_Hi[3]	для канала 3	0,000,0004	0.00	0 0	-100 C	100 C
0x64E	OffsetR0_Low[4]	Смещение R0	4e R0 0x03,0x04 0x1	0×10	0x10 0 °C	-100 °C	100 °C
0x64F	OffsetR0_Hi[4]	для канала 4	0.000,00.04	0.10	0.0	-100 C	100 C
0x650	OffsetR0_Low[5]	Смещение R0	0x03,0x04	0x10	0 ℃	-100 °C	100 °C
0x651	OffsetR0_Hi[5]	для канала 5	0,000,000	0.10	0 0	-100 C	100 C
0x0702	OffsetRange0_Low	Смещение нуля для диа-	0x03,0x04	0x10	0	-0,1	0,1
0x0703	OffsetRange0_Hi	пазона 0	0,000,0004	0.10		-0, 1	0, 1
0x0704	SlopeRange0_Low	Наклон для диапазона 0	0x03,0x04	0x10	1	0,9	1,1
0x0705	SlopeRange0_Hi		0,000,0004	0.10	'	0,0	1,1
0x0706	OffsetRange1_Low	Смещение нуля для диа- пазона 1	0x03,0x04	0x10	0	-60	60
0x0707	OffsetRange1_Hi		5,00,0x0 4	OXIO		- 00	
0x0708	SlopeRange1_Low	Наклон для диапазона 1	0x03,0x04	0x10	:10 1	0,9	1,1
0x0709	SlopeRange1_Hi		3,00,0,0	OX 10	'	0,0	1,1

Таблица В.5 – Градуировочные коэффициенты

таолица в.э – градуировочные коэффициенты									
Адрес регистра	Регистр	Наименование параметра	Команда чтения	Команда записи	Значение по умол- чанию	Min	Max		
0x070A	OffsetRange2_Low	Смещение	0.02 0.04	0.40	0	-30	30		
0x070B	OffsetRange2_Hi	нуля для диапазона 2	0x03,0x04	0x10	0		30		
0x070C	Slope Range 2_Low	Наклон для	0x03,0x04	0x10	1	0,9	1,1		
0x070D	SlopeRange2_Hi	диапазона 2					1,1		
0x070E	OffsetRange3_Low	Смещение	0x03,0x04	0x10	0	-15	15		
0x070F	OffsetRange3_Hi	нуля для диапазона 3	0x03,0x04	0.00	U	-10	15		
0x0710	SlopeRange3_Low	Наклон для	0x03,0x04	0x10	1	0,9	1,1		
0x0711	SlopeRange3_Hi	диапазона 3	0.003,0.004	0.00	1		1,1		
0x0712	OffsetRange4_Low	Смещение нуля для	0x03,0x04	0x10	0	-7	7		
0x0713	OffsetRange4_Hi	диапазона 4					,		
0x0714	SlopeRange4_Low	Наклон для	0x03,0x04	0x10	1	0,9	1,1		
0x0715	SlopeRange4_Hi	диапазона 4					1,1		
0x0716	OffsetRange5_Low	Смещение нуля для	0x03,0x04	0x10	0	-4	4		
0x0717	OffsetRange5_Hi	нуля для диапазона 5		0.00			4		
0x0718	SlopeRange5_Low	Наклон для	0x03,0x04	0x10	1	0,9	1,1		
0x0719	SlopeRange5_Hi	диапазона 5					1,1		
0x071A	OffsetRange6_Low	Смещение нуля для	0x03,0x04	0x10	0	-2	2		
0x071B	OffsetRange6_Hi	диапазона 6							
0x071C	SlopeRange6_Low	Наклон для	0x03,0x04	0x10	1	0,9	1,1		
0x071D	SlopeRange6_Hi	диапазона 6					1,1		
0x071E	OffsetRange7_Low	Смещение нуля для	0x03,0x04	0x10	0	-1	1		
0x071F	OffsetRange7_Hi	диапазона 7					'		
0x0720	SlopeRange7_Low	Наклон для	0x03,0x04	0x10	1	0,9	1,1		
0x0721	SlopeRange7_Hi	диапазона 7	0,000,000	0.10	1		1,1		

Таблица В.6 – Регистры состояния канала

Адрес в команде	Регистр	Назначение	Команда чтения	Команда записи
0x0000	DIS.0	Состояние канала 0		
0x0001	DIS.1	Состояние канала 1		
0x0002	DIS.2	Состояние канала 2	0x01,0x02	_
0x0003	DIS.3	Состояние канала 3		
0x0004	DIS.4	Состояние канала 4		
0x0005	DIS.5	Состояние канала 5		

П р и м е ч а н и е – «0» в регистре – канал нормально функционирует, «1» в регистре – ошибка на канале.

В.1.4. Все доступные для обмена данные разбиты на три типа:

- битовые:
- целочисленные;
- с плавающей запятой.

Битовые данные представляют собой дискретные сигналы – «DISCRETE INPUTS». Младшие шесть бит регистров **DIS** соответствуют шести входным каналам: младший бит регистра соответствует каналу [0] и т.д. Команда доступа к битовым данным осуществляется по протоколу MODBUS RTU через команды чтения 0x01 или 0x02.

Целочисленные данные имеют размерность в один регистр и представляют собой целое число без знака (от 0 до 65535) или целое число со знаком (от -32768 до 32767).

Число с плавающей запятой (float IEEE754) занимает 4 байта или 2 регистра: младшие 2 байта располагаются в младшем регистре, а старшие 2 байта – в следующем по счету старшем регистре.

В.2. Порядок работы с регистрами

B.2.1. Регистр ValueNorm[0]...[5]

Регистр используется для хранения целочисленного представления измеряемой величины соответствующего канала и имеет следующие свойства:

- регистр доступен по чтению;
- формат: двухбайтовое целое без знака;
- значения передаются в относительных величинах, приведенных к диапазону данного типа датчика соответствующего канала.

Значение регистра вычисляется по формул	ачение р	е регистра	а вычисляется	ПО	форму	/ле
---	----------	------------	---------------	----	-------	-----

$$ValueNorm = 65535 \frac{Value - MinRange}{MaxRange - MinRange},$$
 (B.1)

где ValueNorm – целочисленное представление измеряемой величины канала;

Value – измеряемая величина канала.

Значения MaxRange и MinRange для каждого типа датчика приведены в таблице В.2.

B.2.2. Регистр **SensType[0]...[5]**

Регистр используется для конфигурации типа датчика соответствующего канала и имеет следующие свойства:

- регистр доступен по записи и чтению;
- -формат регистра: двухбайтовое целое без знака.

Соответствие значения регистра типу датчиков приведено в таблице В.2.

B.2.3. Регистр **ENCN**

Регистр используется для разрешения/запрещения работы каналов. Каждый бит младшего байта данного регистра соответствует одному измерительному каналу: младший бит соответствует каналу [0], а шестой бит — каналу [5]. Запись в регистр «1» включает соответствующий канал, а «0» — выключает. Время полного цикла опроса АЦП прямо пропорционально количеству включенных каналов.

B.2.4. Регистр **DEFAULT_SET**

Регистр используется для записи заводских установок параметров. Регистр доступен по записи и чтению.

Запись заводских установок инициируется записью значения 0x0001 в данный регистр, при этом перезаписываются все параметры, доступные по записи, кроме MODEL, VER, TEXT и градуировочных коэффициентов.

При чтении этого регистра можно получить сообщения об ошибках при этой операции: сообщение 0x0000 — запись произведена успешно; 0x0001 — запись продолжается; 0x0002 — при записи возникли ошибки.

B.2.5. Регистр VERIFY_CLB

Регистр предназначен для запуска процедуры проверки совпадения текущих градуировочных коэффициентов с копией коэффициентов, сохраненных в защищенной области. Проверка производится при записи значения 0x0001 в данный регистр. Регистр доступен по чтению и записи. При чтении этого регистра можно получить сообщения об ошибках при этой операции: сообщение 0x0000 — проверка совпадения произведена успешно; 0x0001 — проверка совпадения продолжается; 0x0002 — при проверке совпадения возникли ошибки.

B.2.6. Регистр **RESTORE CLB**

Регистр используется для восстановления заводских градуировочных коэффициентов. При записи значения 0x0001 в данный регистр производится восстановление заводских значений градуировочных коэффициентов. Регистр доступен по чтению и записи. При чтении этого регистра можно получить сообщения об ошибках при этой операции: сообщение 0x0000 — восстановление произведено успешно; 0x0001 — восстановление продолжается; 0x0002 — при восстановлении возникли ошибки.

B.2.7. Регистр Value[0]...[5]

Регистр используется для хранения и чтения текущего значения измеряемой величины и имеет следующие свойства:

- регистр доступен по чтению;
- формат регистра число с плавающей запятой.

B.2.8. Регистр ValueAttr[0]...[5]

Регистр является копией регистра **Value** соответствующего канала. Регистр доступен по чтению.

B.2.9. Регистр ValueError[0]...[5]

Регистр статуса измеряемого канала предназначен для хранения и чтения текущего значения кода ошибки данного канала:

- 0 нет ошибки:
- 1 выход за диапазон;
- 2 обрыв датчика;
- 3 EL-4015 неработоспособен;
- 4 недопустимое значение параметра;
- 5 канал выключен.

Регистр доступен по чтению.

B.2.10. Регистр ValueTime[0]...[5]

Регистр используется для вычисления точного интервала времени между соседними измерениями, что может понадобится, например, для реализации ПИД-регулирования. Время измерения вычисляется в единицах 1/100 с.

Данный регистр отображает значение двухбайтного целого циклического счетчика времени в момент старта последнего АЦП преобразования на данном канале. Регистр доступен по чтению.

Примечание: Регистры

- ValueAttr[0], ValueError[0], ValueTime[0];
- ValueAttr[1], ValueError[1], ValueTime[1];
- ValueAttr[2], ValueError[2], ValueTime[2];
- ValueAttr[3], ValueError[3], ValueTime[3];
- ValueAttr[4], ValueError[4], ValueTime[4];
- ValueAttr[5], ValueError[5], ValueTime[5]

следует считывать группами по три регистра (указанных в строках) одной командой. Считывание регистров отдельно невозможно.

B.2.11. Регистр LatchValue[0]...[5]

Регистр используется для хранения измеренных значений при защелкивании с помощью регистра **LATCH**. Регистр доступен по чтению. Формат регистра – число с плавающей запятой.

B.2.12. Регистр **FADC**

Регистр предназначен для задания частоты измерения АЦП в соответствии с таблицей В.7. Регистр доступен по чтению и записи.

Таблица В.7 – Регистры для задания частоты АЦП

Значение регистра FADC	01	02	03	04	05	06	07	80	09	0A	0В	0C	0D	0E	0F
Частота АЦП, Гц	470	242	123	62	50	39	33,2	19,6	16,7	16,7	12,5	10	8,33	6,25	4,17
Время измерения АЦП, мс (Тизм АЦП)	5	9	17	33	40	52	61	103	120	120	160	200	240	320	480

Значение «09» соответствует таким настройкам цифрового фильтра АЦП, которые способствуют подавлению помех на частоте 50 Гц (80 дБ), а значение «0А» – на частоте 50 и 60 Гц (65 дБ).

B.2.13. Регистр dTSelfCalibADC

Регистр предназначен для задания периода автоматической градуировки АЦП в секундах. При значении параметра, равным «0», автоматическая градуировка производится после каждого цикла измерений.

B.2.14. Регистр GoSelfCalibADC

Регистр предназначен для запуска процесса автоматической градуировки АЦП. Запись 0x0001 в этот регистр инициирует проведение самокалибровки АЦП.

В.2.15. Регистр **RL**

Регистр сопротивления линии. Регистр используется для компенсации сопротивления линии при двухпроводном подключении. При расчетах температуры значение этого регистра вычитается из измеренного сопротивления на соответствующем канале.

B.2.16. Регистр Offset[0]...[5]

Регистр предназначен для задания смещения измеренного значения. Прибавляется к измеренному значению по каждому каналу. Формат регистра – число с плавающей запятой.

B.2.17. Регистр NambAverage

Регистр предназначен для задания количества усреднений при градуировке.

B.2.18. Регистр CalibOffset

Регистр предназначен для запуска процесса градуировки смещения по сопротивлению на указанном канале. Градуировка проводится на том измерительном диапазоне АЦП, который соответствует текущему типу датчика на данном канале. В результате градуировки в регистр **OffsetRange** соответствующего диапазона записывается новое значение смещения.

Регистр доступен по чтению и записи. При чтении этого регистра можно получить сообщения об ошибках при этой операции: сообщение 0x0000 — градуировка произведена успешно; 0x0001 — градуировка продолжается; 0x0002 — при градуировке возникли ошибки.

B.2.19. Регистр CalibSpan

Регистр предназначен для запуска процесса градуировки наклона характеристики по сопротивлению на указанном канале. При записи номера канала в данный регистр инициируется градуировка наклона характеристики по сопротивлению. Градуировка проводится на том

измерительном диапазоне АЦП, который соответствует текущему типу датчика на данном канале. В результате градуировки в регистр **SlopeRange** соответствующего диапазона записывается новое значение наклона.

Регистр доступен по чтению и записи. При чтении этого регистра можно получить сообщения об ошибках при этой операции: сообщение 0x0000 — градуировка произведена успешно; 0x0001 — градуировка продолжается; 0x0002 — при градуировке возникли ошибки.

B.2.20. Регистр **DeviceError**

Регистр предназначен для отображения общих ошибок EL-4015.

B.2.21. Регистр OffsetR0

Регистр используется для корректировки R0 при прецезионных измерениях.

При расчетах температуры значение этого регистра прибавляется к значению R0 в соответствии с типом датчика для данного канала.

B.2.22. Регистр OffsetRange0...7

Регистр предназначен для задания значения смещения нуля по сопротивлению для соответствующего диапазона. Формат регистра – число с плавающей запятой.

B.2.23. Регистр SlopeRange0...7

Регистр предназначен для задания значения наклона характеристики по сопротивлению для соответствующего диапазона. Формат регистра — число с плавающей запятой.

В.2.24. Служебные регистры

В.2.24.1. Регистр **RATE**

В регистре задается номер скорости обмена, на которой происходит обмен с EL-4015. Коды скоростей указаны в таблице В.З.1. При записи в этот регистр EL-4015 ответит подтверждением на команду записи, а после этого переходит на новую скорость. Значение по умолчанию 0x0006.

B.2.24.2. Регистр **PARITY**

Регистр предназначен для задания паритета при обмене с EL-4015. Коды паритетов, с которыми EL-4015 будет обмениваться, указаны в таблице В.З.2. При записи в этот регистр EL-4015 ответит подтверждением на команду записи, а после этого переходит на новый паритет. Значение по умолчанию 0x0000.

B.2.24.3. Регистр ADDRESS

Регистр предназначен для задания сетевого адреса EL-4015. Может принимать значения от 1 до 247. При записи в этот регистр EL-4015 ответит подтверждением на команду записи, а после этого переходит на новый сетевой адрес. Значение по умолчанию 0x0001.

B.2.24.4.Регистр **BLINK**

Регистр, упрощающий проверку связи и опознание EL-4015 в сети управления. При записи в этот регистр значения 0x0001 на 10 с включается мигающий режим светодиода «Обмен».

B.2.24.5.Регистр **PROTOCOL**

Регистр, позволяющий выбирать тип протокола обмена. Коды выбора протокола приведены в таблице В.З.З. Значение по умолчанию 0x0000.

B.2.24.6. Регистр **LATCH**

Регистр синхронного защелкивания используется для одновременной записи измеренных значений всех входов нескольких EL-4015. Защелкивание осуществляется записью в регистр **LATCH** любого значения. Защелкнутые значения сохраняются в регистрах **LatchValue**.

B.2.24.7. Регистр **MODEL**

Регистр предназначен для хранения цифрового обозначения модели прибора.

B.2.24.8. Регистр **VER**

Регистр предназначен для хранения варианта исполнения EL-4015.

B.2.24.9. Регистр **MODE_INIT**

Регистр отображает состояние переключателя режимов «INIT» – «NORM», расположенного на задней панели EL-4015. 0 – означает режим «NORM», 1 – режим «INIT».

B.2.24.10. Регистр **RESET**

Регистр предназначен для программного перезапуска EL-4015. Перезапуск производится записью значения 0x0001 в данный регистр. Регистр доступен по записи и чтению.

B.2.24.11. Регистр **ТЕХТ**

Набор регистров пользователя для хранения текстового описания объекта управления. Текст хранится в формате Win 1251.

В.3. Особенности работы с EL-4015

- В.3.1. Регистры ValueNorm[0]...[5], SensType[0]...[5], ENCN полностью совместимы с соответствующими регистрами приборов ADAM 4015 как по адресам, так и по форматам данных.
 - В.3.2. Цикл опроса АЦП производится в следующем порядке:
 - опрашиваются все включенные каналы (ENCN) от 0 до 5;
 - перед измерением каждого канала производится проверка: если время с момента проведения предыдущей автоматической градуировки АЦП превысило значение параметра «Период автоматической градуировки АЦП» (dTSelfCalibADC), то производится автоматическая градуировка АЦП с настройками требуемого диапазона измерения:
 - после измерения последнего канала цикл замыкается (переход к измерению канала 0).

Время измерения одного канала зависит от параметра «**FADC**»в соответствии с таблицей В.7.

Перед проведением очередного измерения выдерживается задержка 5 мс на установление сигнала на входе АЦП.

Время проведения автоматической градуировки АЦП равно удвоенному времени измерения для данной частоты АЦП.

Таким образом, полный цикл опроса АЦП примерно равен:

$$(T_{delav} + T_{usm ALI\Pi}) \cdot N,$$
 (B.2)

где *N* – число включенных каналов;

 T_{delay} – задержка на установление сигнала перед

АЦП-преобразованием (5 мс);

Цикл опроса периодически прерывается на время T_{usm} для проведения автоматической градуировки АЦП.

- В.З.З. В EL-4015 предусмотрена возможность градуировки измерительных диапазонов. Возможны также градуировка смещения и градуировка наклона характеристики. Градуировка производится в следующей последовательности:
 - подключить EL-4015 к ПК в соответствии с рисунком Г.1 приложения Г;
 - подключить к каналу [0] магазин сопротивлений по 3-х проводной схеме и выставить на магазине значение 0 Ом;

- запустить программу «EL-4000 Config»;
- установить связь с EL-4015;
- нажать кнопку «ClbOffset» (градуировка смещения), соответствующую выбранному номеру канала предварительно установив номер канала [0] и требуемое количество усреднений при градуировке;
- в подавляющем большинстве случаев градуировка смещения не требуется и соответствующие градуировочные коэффициенты могут быть записаны нулевыми;
- для проведения градуировки наклона необходимо выставить на магазине сопротивлений, подключенному к каналу [0], значение сопротивления в соответствии со значениями, указанными в таблице В.1 (точка градуировки по диапазону);
- номер диапазона следует выбирать в соответствии с типом датчика по таблице В.2 (столбец № диапазона градуировки);
- для запуска градуировки наклона необходимо нажать кнопку «ClbSpan», предварительно установив номер канала – [0] и требуемое количество усреднений при градуировке;
- рекомендуемое количество усреднений равно 8;
- в большинстве случаев градуировка не требуется в течение межповерочного интервала, если EL-4015 работает на частоте АЦП, заданной по умолчанию FADC=0x000A;
- при переключении на другие частоты АЦП может потребоваться градуировка;
- при необходимости можно восстановить заводские значения градуировочных коэффициентов с помощью кнопки «RESTORE Calib»;
- градуировка на предприятии—изготовителе производится на частоте 16,7 Гц с подавлением 65 дБ помех на частоте 50 Гц и 60 Гц (FADC=0x000A); данная частота АЦП является рекомендуемой, т.к. подавляющее большинство промышленных помех присутствуют именно на частоте промышленных систем 50 Гц для Европы и 60 Гц для США;
- для задания тестовых сигналов градуировки наклона следует использовать оборудование с классом точности как минимум в 3 раза лучше, чем градуируемый EL-4015.

В.3.4. Синхронное защелкивание состояния входов

Для одновременного записи измеренных значений большого числа входов нескольких EL-4015 используется следующий прием.

Необходимое количество входов проверяется нужным количеством EL-4015. В момент времени, в который нужно знать измеренные значения на всех входах всех EL-4015, подается команда синхронного защелкивания данных (команда представляет собой фиктивную запись любого числа по адресу 0х417 — регистр **LATCH**) с широко-

вещательным адресом 0. По этой команде все EL-4015 одновременно запоминают измеренные значения в регистрах **LatchValue**.

Адрес «0» является широковещательным. При обнаружении на линии RS 485 команды с адресом «0» все приборы выполняют принятую команду, но не передают ответ.

В.3.5. Скорость опроса

Для оценки скорости опроса EL-4015 в таблице В.8 приведены значения времени:

- чтения восьми регистров/чтения одного регистра/записи в один регистр.

Необходимо иметь в виду следующее:

- время опроса представляет собой интервал от момента посылки ПК первого байта команды до момента получения ПК последнего байта ответа EL-4015;
- посылка команды изменения скорости обмена или бита паритета требует паузы не менее 40 мс перед посылкой следующей команды.

Таблица В.8 – Зависимость времени опроса от скорости обмена

Cuanaan	Время опроса, мс								
Скорость обмена, бод	Чтение восьми	Чтение одного	Запись в один						
оомена, оод	регистров	регистра	регистр						
1200	280	270	180						
2400	145	90	95						
4800	75	50	50						
9600	40	25	25						
19200	25	15	15						
38400	15	10	10						
57600	10	10	10						
115200	10	10	10						

После подачи команд «Reset» и «Default_Set» требуется пауза 400 мс.

Чтобы понять окончила ли работу какая—либо функция (Default_Set или ClbSpan и т.д.) достаточно считать значение этой функции. Если возвращённое значение равно 0, это значит, что функция успешно закончила свою работу. Если не равно нулю или единице, функция закончила свою работу с ошибками. Если значение равно 1, то функция всё ещё активна.

Приложение Г Модуль аналогового ввода «ЭЛЕМЕР-EL-4015». Схема подключения при настройке

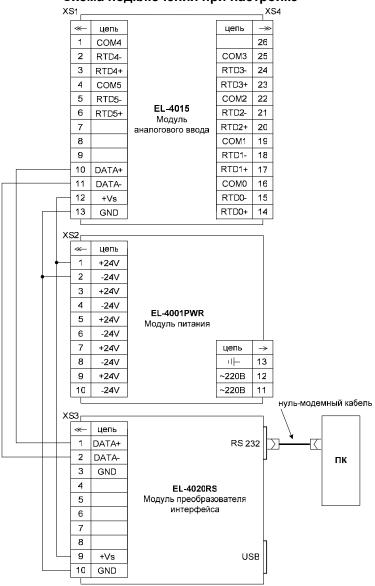


Рисунок Г.1

Продолжение приложения Г Модуль аналогового ввода «ЭЛЕМЕР-EL-4015». Схема подключения к ПК

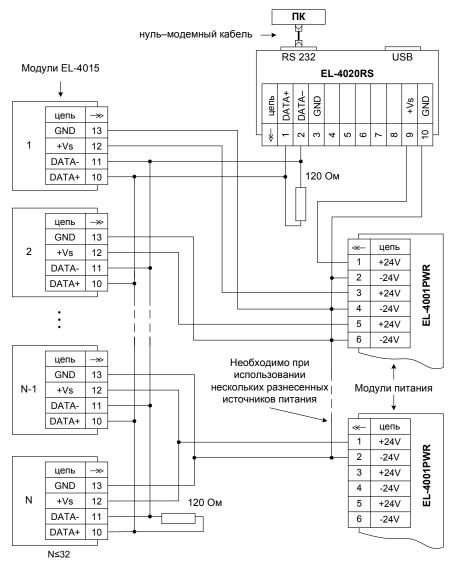


Рисунок Г.2

Приложение Д Модуль аналогового ввода «ЭЛЕМЕР-EL-4015». Монтаж на DIN-рейку

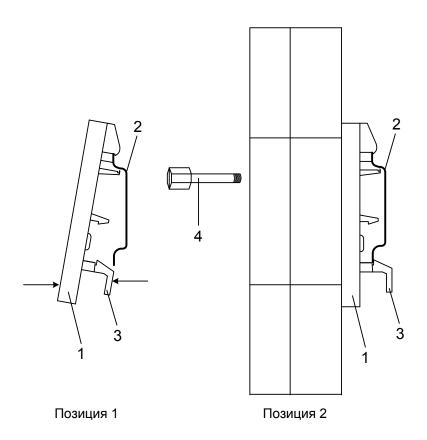
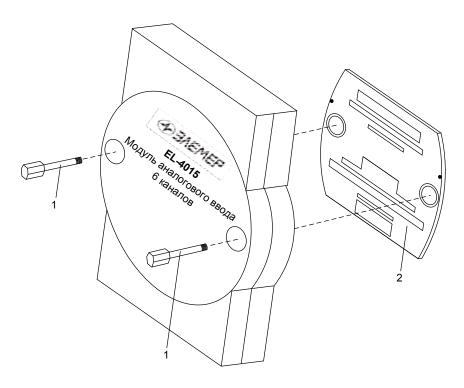



Рисунок Д.1

Обозначения к рисунку Д.1:

- 1 панель для крепления на DIN-рейку;
- 2 DIN–рейка; 3 нижний фиксатор панели;
- 4 невыпадающие винты.

Продолжение приложения Д Модуль аналогового ввода «ЭЛЕМЕР-EL-4015». Крепление к панели

Рисунок Д.2

Обозначения к рисунку Д.2:

- 1 невыпадающие винты;
- 2 панель для крепления на DIN-рейку.

Продолжение приложения Д Модуль аналогового ввода «ЭЛЕМЕР-EL-4015». Крепление «ЭЛЕМЕР-EL-4015»

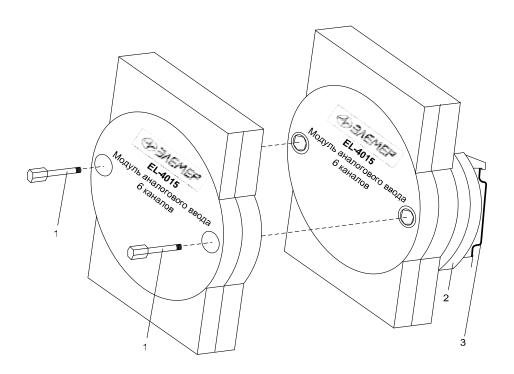


Рисунок Д.3

Обозначения к рисунку Д.3:

- 1 невыпадающие винты;
- 2 панель для крепления на DIN-рейку;
- 3 DIN-рейка.

Приложение E Модуль аналогового ввода «ЭЛЕМЕР-EL-4015». Пример записи обозначения при заказе

- 1. Тип прибора
- 2. Класс точности (индекс заказа) (таблица 2.1)
- 3. Код климатического исполнения: С4, Т3 (в соответствии с п. 2.1.5)
- 4. Программное обеспечение (опция «ПО»)
- 5. Обозначение технических условий

Пример заказа

$$\frac{\text{«} \text{ЭЛЕМЕР-EL-4015}\text{»}}{1} - \frac{A}{2} - \frac{C4}{3} - \frac{\Pi O}{4} - \frac{\text{TY 4217-090-13282997-09}}{5}$$