

Модель GDT-20

Модель GDHT-20

avrora-arm.ru +7 (495) 956-62-18 Part of your business

 $\ \odot$ 2013 WIKA Alexander Wiegand SE & Co. KG Все права защищены.

WIKA® является зарегистрированной торговой маркой в различных странах.

Перед выполнением каких-либо работ внимательно изучите руководство по эксплуатации!
Сохраните его для последующего использования!

Содержание

1. Общая информация	4
2. Безопасность	5
3. Технические характеристики	9
4. Конструкция и принцип действия	10
5. Транспортировка, упаковка и хранение	11
6. Пуск, эксплуатация	12
7. Обслуживание и очистка	27
8. Неисправности	28
9. Демонтаж, возврат и утилизация	28
Приложение 1: Погрешность точки росы	30

Декларации соответствия приведены на www.wika.com

5/2020 RU based on 10/2019 EN/DE

1. Общая информация

1.Общая информация

RH

- Преобразователь, описанный в данном руководстве по эксплуатации, разработан и произведен в соответствии с новейшими технологиями. Во время производства все компоненты проходят строгую проверку на качество и соответствие требованиям защиты окружающей среды. Наши системы управления сертифицированы в соответствии с ISO 9001 и ISO 14001.
- Данное руководство содержит важную информацию по эксплуатации прибора. Для безопасной работы необходимо соблюдать все указания по технике безопасности и правила эксплуатации.
- Соблюдайте соответствующие местные нормы и правила по технике безопасности, а также общие нормы безопасности, действующие для конкретной области применения прибора.
- Руководство по эксплуатации является частью комплекта поставки изделия и должно храниться в непосредственной близости от измерительного прибора, в месте, полностью доступном соответствующим специалистам.
- Перед началом использования прибора квалифицированный персонал должен внимательно прочитать данное руководство и понять все его положения.
- Производитель не несет ответственности за повреждения, произошедшие в результате использования прибора не по его прямому назначению, игнорирования требований руководства по эксплуатации, допуска персонала, не имеющего соответствующей квалификации или внесения изменений в конструкцию прибора.
- Необходимо соблюдать условия, указанные в документации поставщика.
- Технические характеристики могут быть изменены без предварительного уведомления.
- Дополнительная информация:

- Адрес в сети Интернет:
- Соответствующие
типовые листы:
- Консультант по
применению:

www.wika.de / www.wika.com SP 60.09 (модель GDT-20), SP 60.14 (модель GDHT-20) Тел.: +49 9372 132-8971

Факс: +49 9372 132-8008971 info@wika.com

1. Общая информация / 2. Безопасность

Условные обозначения

ВНИМАНИЕ!

... указывает на потенциально опасную ситуацию, которая, если ее не избежать, может привести к серьезным травмам или летальному исходу.

осторожно!

... указывает на потенциально опасную ситуацию, которая, если ее не предотвратить, может явиться причиной легких травм, повреждения оборудования или угрозы для окружающей среды.

Информация

... указывает на полезные советы, рекомендации и информацию, позволяющую обеспечить эффективную и безаварийную работу.

2. Безопасность

ВНИМАНИЕ!

Перед монтажом, пуском и эксплуатацией убедитесь в правильности выбора преобразователя в части диапазона измерения, конструкции и конкретных условий измерения.

Игнорирование данной рекомендации может привести к серьезным травмам персонала и/или повреждению оборудования.

Другие важные замечания по технике безопасности приведены в соответствующих разделах данного руководства по эксплуатации.

2.1 Назначение

Данные преобразователи предназначены для использования в системах с заполнением элегазом SF_6 . Они позволяют производить непрерывные измерения давления, температуры и влажности (только модель GDHT-20). На основании полученных данных преобразователь вычисляет плотность газа и точку росы (только модель GDHT-20) элегаза SF_6 для оценки состояния системы. Все указанные параметры передаются по протоколу Modbus® через интерфейс RS-485. Благодаря этому преобразователи модели GDT-20 или GDHT-20 используются

для непрерывного контроля указанных параметров в резервуарах с элегазом SF₆.

RU

Прибор разработан и произведен исключительно для применений, описанных в настоящем руководстве, и должен использоваться только соответствующим образом.

Необходимо изучить технические характеристики, приведенные в данном руководстве по эксплуатации. Неправильное обращение или эксплуатация прибора вне допустимых пределов требует его немедленного отключения и осмотра сертифицированным сервисным инженером WIKA.

Все обязательства производителя аннулируются в случае использования прибора не по назначению.

2.2 Квалификация персонала

ВНИМАНИЕ!

Опасность получения травм при недостаточной квалификации персонала

Неправильное обращение с прибором может привести к значительным травмам или повреждению оборудования.

- Действия, описанные в данном руководстве по эксплуатации, должны выполняться только квалифицированным персоналом, обладающим описанными ниже навыками.
- Доступ неквалифицированного персонала в опасные зоны запрещен.

Квалифицированный персонал

Под квалифицированным персоналом, допущенным эксплуатирующей организацией, понимается персонал, который, основываясь на своей технической подготовке, сведениях о методах измерения и управления, опыте и знаниях нормативных документов, современных стандартов и директивных документов, действующих в конкретной стране, способен выполнять описываемые действия и самостоятельно распознавать потенциальную опасность.

Эксплуатация в специальных условиях требует от персонала дополнительных знаний, например, об агрессивных средах.

Указания по технике безопасности при работе с коммутационными установками

ВНИМАНИЕ!

Остатки измеряемой среды в демонтированном преобразователе могут представлять опасность для персонала, окружающей среды и оборудования. Примите необходимые меры предосторожности.

В случае неисправности возможно присутствие агрессивной измеряемой среды.

Эксплуатирующая установку организация должна обеспечить, чтобы работы с элегазом SF₆ выполнялись исключительно квалифицированной компанией или персоналом, специально обученным в соответствии с разделом 4.3.1 стандарта МЭК 61634 или разделом 10.3.1 стандарта МЭК 60480.

Применимые стандарты и директивы по элегазу SF₆

Монтаж, сборка, ввод в эксплуатацию:

- BGI 753 (Элегазовые SF₆ установки и оборудование в Германии)
- МЭК 61634 (Правила эксплуатации систем с элегазом SF₆)
- МЭК 60376 (Свежий элегаз SF₆, технический элегаз SF₆)
- МЭК 60480 (Отработанный элегаз SF₆)
- Отчет CIGRÈ 276, 2005 (Руководство по практическому применению элегаза SF₆)

Утечки в процессе эксплуатации:

- МЭК 60376 (Свежий элегаз SF₆, технический элегаз SF₆)
- МЭК 60480 (Отработанный элегаз SF₆)
- CIGRE 2002 ("Элегаз SF₆ в электротех нической промышленности")

Ремонтные работы и техническое обслуживание:


- МЭК 61634 (Правила эксплуатации элегаза SF₆ в высоковольтных установках и шкафах управления)
 CIGRE 1991 (Правила обращения с элегазом SF₆)
- Отчет CIGRE 276, 2005 (Руководство по практическому применению элегаза SF₆)
- Отчет CIGRE 163, 2000 (Руководство по обращению с элегазовыми смесями SF₆)

Элегаз не имеет цвета и запаха, является химически нейтральным, инертным и негорючим, тяжелее воздуха, не является токсичным и не представляет угрозы для озонового слоя Земли.

Подробная информация приведена в стандарте МЭК 60376 и МЭК 61634.

2.4 Маркировка

Маркировочная табличка прибора GDT-20

Назначение контактов

Маркировочная табличка прибора GDHT-20

	WIKA	GDHT-20	C€	∆ ⇒Ш
Р# артикул S# сер. номер Диапазон изм. давления Диапазон изм. температуры Диапазон изм. потности Диапазон изм. томпоросы Номмуникац, протокол Напр. питания	P# S# Pressure: 0 16 bar Temp.: -40 °C +80 Density: 0 60 g/l Dew point: -60 °C MODBUS RTU 17 30 VDC, Pmax. Made in Germany www.wika	abs 2 °C 3 +20 °C 5	Description C UB GND A B	on RS-485 GND 17-30 VDC Ground RS-485 RS-485

Назначение контактов

Обозначения

Перед монтажом и пуском оборудования внимательно изучите руководство по эксплуатации!

3. Технические характеристики

3. Технические характеристики

Диапазоны измерения

Точка росы при

атмосферном -50 ... +30 °C (только для GDHT-20)

давлении:

Плотность¹): 0 ... 60 г/л (8,87 бар абс. элегаз SF_6 при 20 °C)

Температура: -40 ... +80 °С

Давление при 20 °C: 0 ... 8,87 бар абс., элегаз SF₆

 Давление:
 0 ... 16 бар абс.

 Давление разрыва:
 52 бар абс.

 Перегрузка:
 До 30 бар абс.

Эталон давления: Абсолютное давление

1) Условия измерения давления формируются при расчете газовой смеси.

Диапазоны допустимых температур

Температура эксплуатации (стандартно): -40...+80 C, -40...+176 F Температура эксплуатации (опционально): -60...+80 C, -76...+176 F Температура хранения: -40...+80 C, -40...+176 F

Допустимая влажность

≤ 90 % отн. влажность (без конденсации)

Напряжение питания U_B+

17 ... 30 В пост. тока

Потребляемая мощность

GDT-20: макс. 0,5 Вт GDHT-20: макс. 3 Вт

Электрическое соединение

Круглый разъем M12 x 1 (5-контактный) Modbus® RTU через интерфейс RS-485

Пылевлагозащита

IP65, только при подключенных ответных частях разъемов с соответствующей степенью пылевлагозащиты

3. Технические характеристики / 4. Конструкция

Macca

Приблизительно 0,40 кг

RU

Директива по электромагнитной совместимости 2004/108/EC, EN 61326 излучение (группа 1, класс В) и помехозащищенность (промышленное применение)

Тесты на электромагнитную совместимость

- Помехозащищенность по МЭК 61000-4-3: 30 В/м (80 МГц ... 2,7 ГГц)
- Броски напряжения по МЭК 61000-4-4: 4 кВ
- Электростатический разряд по МЭК 61000-4-2: 8 кВ/15 кВ, контакт/воздух
- Импульсные напряжения по МЭК 61000-4-5: GDT-20: 2 кВ проводник/земля, 1 кВ проводник/проводник GDT-20: 1 кВ проводник/земля, 1 кВ проводник/проводник
- Высокочастотные поля по МЭК 61000-4-6: GDT-20: 10 В GDHT-20: 3 В

Параметры для специальных моделей указаны в технических характеристиках, приведенных в накладной.

Более подробные характеристики приведены в типовых листах WIKA SP 60.09 (GDT-20), SP 60.14 (GDHT-20) и документации к заказу.

4. Конструкция и принцип действия

4.1 Кодировка

Описанные преобразователи оснащены датчиками давления, температуры и точки росы/влажности (только GDHT-20). На основе этих данных встроенный микропроцессор по определенному алгоритму вычисляет параметры состояния элегаза SF₆, а именно плотность и влажность (только GDHT-20).

4.2 Комплектность поставки

Сверьте комплектность поставки с накладной.

5. Транспортировка, упаковка и хранение

5. Транспортировка, упаковка и хранение

5.1 Транспортировка

Проверьте прибор на предмет отсутствия возможных повреждений, которые могли произойти при транспортировке. При обнаружении повреждений следует немедленно составить соответствующий акт и известить транспортную компанию.

5.2 Упаковка

Не удаляйте упаковку до момента начала монтажа. Сохраняйте упаковочный материал, т.к. он обеспечивает оптимальную защиту при транспортировке (например, при смене места монтажа или при передаче в ремонт).

5.3 Хранение

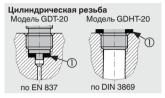
Допустимые условия хранения:

- Температура хранения: -40 ... +80 °C
- Влажность: 90 % отн. влажности (без конденсации)

Избегайте воздействия следующих факторов:

- Воздействия прямых солнечных лучей или близости к нагретым объектам
- Механических вибраций, механических ударов (падения на твердую поверхность)
- Попадания сажи, паров, пыли и коррозионных газов
- Опасных условий окружающей среды, воспламеняющихся сред

Храните прибор в оригинальной упаковке в условиях, соответствующих указанным выше требованиям.


ВНИМАНИЕ!

Перед отправкой прибора на хранение (после эксплуатации) полностью удалите из него остатки измеряемой среды. Это особенно важно в случае, когда измеряемая среда представляет опасность для здоровья персонала, например является едкой, токсичной, канцерогенной, радиоактивной и т.д.

RU

6.1 Механический монтаж

6.1.1 Уплотнение технологического присоединения Для цилиндрической резьбы используйте плоские шайбы, уплотнительные кольца или профилированные уплотнения WIKA, установленные на уплотнительную поверхность ①.

При монтаже GDHT-20 незначительное количество атмосферной влаги неизбежно попадает в измерительную ячейку. Получение корректных результатов измерения в элегазовых ячейках в отсутствие расхода крайне сухого газа возможно только по истечении определенного времени (в зависимости от конкретного применения это может занимать несколько дней).

Предпочтительно размещать точку измерения непосредственно в элегазовой ячейке. Измерение на конце измерительных линий обеспечивают оптимальные результаты (отсутствуют нежелательные перепады температур и нарушение баланса влажности в основной резервуаре).

6.1.2 Монтаж с использованием переходника и измерительных камер

осторожно!

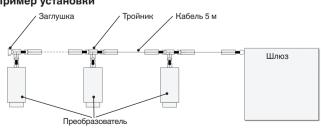
Если модель GDHT-20 поставляется с переходником или измерительной камерой, она полностью собрана и протестирована на герметичность в нашей компании. Демонтаж может нарушить герметичность измерительной сборки и вывести ее из строя!

Технологические присоединения имеющихся переходников и/или измерительных камер необходимо правильно герметизировать и присоединять к точке измерения.

6.1.3 Монтаж прибора

- Необходимое для закручивания прибора усилие не должно прилагаться к корпусу, а только к специально предназначенному для этого шестиграннику под ключ с использованием подходящего инструмента. При закручивании момент затяжки не должен превышать 60 Н м.
- При закручивании не допускайте перекоса резьбы.

6.2 Электрический монтаж


ВНИМ ДНИ Е!

Экран прибора не выполняет роль защитного проводника для обеспечения безопасности персонала, он служит функциональной землей для экранирования прибора от электромагнитных полей.

6.2.1 Выполнение соединений

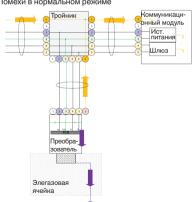
- Используйте кабель передачи данных типа "экранированная витая пара" с подходящими для конкретных условий эксплуатации характеристиками.
- Диаметр кабеля должен соответствовать кабельному вводу. Убедитесь в плотности посадки кабельной муфты на смонтированном разъеме; проверьте установку уплотнений и отсутствие их повреждений. Для обеспечения требуемой степени пылевлагозащиты затяните резьбовое соединение и проверьте правильность установки уплотнений.
- Необходимо обеспечить, чтобы влага не попадала в прибор через кабельные вводы.

Пример установки

5

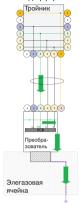
RU

Круглый разъем М12 x 1 (5-ко<u>нтактный)</u> 1 2 U_R+ Питание 3 Земля U_R-4 Сигнал BS-485


Сигнал RS-485

6.2.3 Требования к экранированию и заземлению

- Используйте экранированные кабели и соединяйте экран только со стороны индикатора.
- Датчик давления должен заземляться через технологическое присоединение.
- Не допускается образование цепей с возвратом тока через землю.


Электромагнитные помехи

Помехи в нормальном режиме

Помехи в режиме синфазного сигнала компенсируются благодаря экрану кабеля или заземлению преобразователя.

Помехи в дифф, режиме

Помехи в дифференциальном режиме компенсируются цепочкой конденсаторов, расположенных спереди индикатора.

6.2.4 RS-485

На физическом уровне протокол Modbus® представлен последовательным интерфейсом RS-485 по EIA/TIA-485. Следовательно, дифференциальный сигнал между контактами 4 и 5 (А и В) оценивается по 2-проводной схеме соединений (полудуплекс). Общий опорный потенциал для сигналов присутствует на контакте 1 (С).

6.3 Modbus®

5/2020 RU based on 10/2019 EN/DE

В основе коммуникационного протокола Modbus® лежит архитектура "мастер-устройство/подчиненное устройство". В преобразователях GDT-20 и GDHT-20 используется протокол Modbus® RTU с последовательной передачей данных по 2-проводному интерфейсу RS-485.

Протокол Modbus® имеет одно мастер-устройство. Данное мастер-устройство управляет всеми данными и контролирует возможные задержки (отсутствие ответа от опрашиваемого прибора). Подключенные приборы могут только посылать пакеты по запросу мастер-устройства.

Modbus® RTU (RTU: Remote Terminal Unit измерения (удаленный терминал)) передает данные в двоичном коде, обеспечивая высокую пропускную способность.

RU

Подробная информация о протоколе приведена на www.Modbus.org

6.4 Комплект для пусконаладки Modbus®

Преобразовать может конфигурироваться с помощью опционального комплекта для ввода в эксплуатацию (артикульный номер для заказа 14075896) непосредственно в точке эксплуатации.

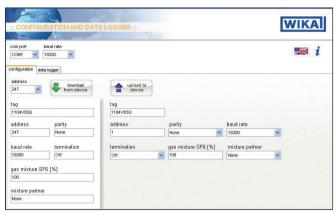
Другой функцией является встроенный регистратор, позволяющий отображать данные измерений за определенный интервал времени или осуществлять запись в файл.

Комплект для пусконаладки состоит из следующих частей:

- Блок источника питания
- Преобразователь интерфейса (RS-485 в USB)
- USB-кабель тип А/тип В
- Кабель датчика с разъемом М12 x 1
- Кабель-переходник для GDM-100-TI
- Инструмент Modbus®

6.4.1 Соединение с компьютером

6.4.2 Инструмент Modbus®


Для наших заказчиков бесплатное программное обеспечение доступно для загрузки с домашней страницы WIKA: https://de-de.wika.de/download_software_gas_density_sensors_de_de.WIKA

После подключения и установки ПО преобразователя интерфейса или копирования ПО инструмента Modbus® можно запускать программу.

Системные требования

Операционная система не ниже Microsoft® Windows® 7 (32-разрядная)

Windows является зарегистрированной торговой маркой Microsoft Corporation в США и других странах.

6.4.2.1 Заводские настройки

Для преобразователя должен быть доступен COM-порт ПК. При поставке адрес установлен на 247, а скорость передачи информации установлена 19200 бод.

При данных настройках информация от преобразователей может считываться путем нажатия клавиши "download from device" (выгрузка из прибора).

Конфигурация

- Ter: WIKA
- Адрес: 247

5/2020 RU based on 10/2019 EN/DE

- Скорость передачи информации: 19200
- Проверка на четность: без проверки
- Нагрузка: выключена
- Элегазовая смесь SF₆ [%]: 100 %
- Компонент газовой смеси: N₂

6.4.2.2 Запись новых параметров

Запишите новые значения коммуникационных параметров перед загрузкой их в прибор, т.к. они снова потребуются при новом сеансе связи с преобразователем.

Введите новые значения в соответствующих полях (под клавишей "upload to device" (загрузка в прибор)).

Описание	Допустимые значения
Тег (имя прибора)	16 символов в ASCII-кодах
Адрес	1 247
Скорость передачи информации	1200 115200
Проверка четности	Без проверки, с проверкой на четность
Нагрузка	Выключена, включена
Элегазовая смесь SF ₆ [%]	0 100
Вспомогательный компонент газовой смеси	N ₂ , CF ₄

При нажатии клавиши "upload to device" (загрузка в прибор) введенные в полях данные записываются в регистр прибора. Для завершения записи отключите источник питания преобразователя после передачи данных и перед его перезагрузкой.

После этого в процессе считывания введенные ранее данные отображаются в левой части экрана.

Если Windows® используется с раскладкой клавиатуры, отличной о латинской (например, с китайской), региональные настройки управления системой необходимо изменить на English (USA), поскольку в противном случае могут иметь место проблемы с коммуникацией.

6.4.2.3 Регистратор

Регистратор используется для записи измеренных значений в пределах определенного интервала времени.

После настройки СОМ-портов, скорости передачи данных, диапазона адресов или интервала записи, может быть запущена функция регистратора. Для обеспечения непрерывности измеренных значений запись в файл может выполняться за определенные промежутки времени, с последующим преобразованием данных, разделенных знаками табуляции. Процесс записи запускается путем нажатия зеленой клавиши. Остановка записи производится нажатием красной клавиши.

6.4.2.4 Регистр Modbus® и описание функций

Для изучения архитектуры Modbus®, на которую мы будем ссылаться в последующих разделах, рекомендуется изучить следующие документы (доступные на www.Modbus.org).

- ХАРАКТЕРИСТИКИ ПРИКЛАДНОГО ПРОТОКОЛА Modbus
 Руководство по организации передачи данных по протоколу
- Руководство по организации передачи данных по проток Modbus по последовательной линии

Далее описывается структура регистра.

Коммуникация с помощью сообщений Общий вид сообщений

Адрес прибора	Функция	Данные	Проверка контроль- ной суммы
8 битов	8 битов	n x 8 битов	16 битов

RU

Символы в одном сообщении не должны содержать интервалы более 1.5 символа.

Примеры типовых сообщений:

Доступные функциональные запросы

Функция	Назначение	Описание
03	Чтение регистров данных	Считывание значений из одного или нескольких регистров или конфигурации прибора
04	Чтение входного регистра	Считывание значения из регистра или конфигурации прибора
06	Запись в отдельный регистр	Запись значения в регистр или конфигурации прибора
16	Запись в несколько регистров	Запись значений в один или несколько регистров или конфигурации прибора
08	Диагностика - субкод 00	Функция диагностики
23	Чтение/запись конфигурации нескольких регистров	Запись или считывание значений из одного/нескольких регистров или конфигурации прибора

6.4.2.5 Регистр данных, измеренные значения

Измеренные значения могут только считываться, но не записываться

Модели GDT-20, GDHT-20				
Изм. параметр)	Ед. измер.	Эталон	
Давление	р	бар	Абс. давление	
Давление	р	MPa	Абс. давление	
Давление	р	Pa	Абс. давление	
Давление	р	kPa	Абс. давление	
	Изм. параметр Давление Давление Давление	Изм. параметр Давление р Давление р Давление р	Изм. параметр Ед. измер. Давление р бар Давление р MPa Давление р Pa	

Модели GDT-20, GDHT-20				
Регистр	Изм. параметр		Ед. измер.	Эталон
00008	Давление	р	psi	Абс. давление
00010	Давление	р	N/cm ²	Абс. давление
00012	Температура	Т	°C	
00014	Температура	Т	K	
00016	Температура	Т	°F	
00018	Плотность газа	rho	г/л	
00020	Плотность газа	rho	КГ/М ³	
00022	Давление, приведенное к 20 °C	p20	бар	Абсолютное давление при 20 °C
00058	Давление, приведенное к 20 °C	p20	бар (отн. давление)	Отн. давление при 20°C относительно 1013 мбар
00060	Давление, приведенное к 20 °C	p20	МПа	Абсолютное давление при 20 ° C
00062	Давление, приведенное к 20 °C	p20	МПа (отн. давление)	Отн. давление при 20 °C относительно 0,1013 МПа

Модель G	DHT-20				
Регистр	Измеряемы	й	Ед.	Эталон-	Эталон
	параметр		изм.	ный газ	
00024	Влажн., точка	T _f	°C	SF ₆	Атм.
	замерзания				давление
00026	Влажность,	T _d	°C	SF ₆	Атм.
	точка росы				давление
00028	Влажн., точка	T _f	°C	SF ₆	Давление в
	замерзания				резервуаре
00030	Влажность,	T _d	°C	SF ₆	Давление в
	точка росы				резервуаре
00032	Влажн., точка	T _f	°C	N_2	Атм.
	замерзания				давление
00034	Влажность,	T _d	°C	N_2	Атм.
	точка росы				давление

RU

Модель GDHT-20					
Регистр	Измеряемыі параметр	Á	Ед. изм.	Эталон- ный газ	Эталон
00036	Влажн., точка замерзания	Tf	°C	N ₂	Давление в резервуаре
00038	Влажность, точка росы	T _d	°C	N ₂	Давление в резервуаре
00040	Содерж. влаги по объему	ppm _v	-	SF ₆	-
00042	Содерж. влаги по массе	ppm _w	-	SF ₆	-
00044	Содерж. влаги по объему	ppm _v	-	N ₂	-
00046	Содерж. влаги по массе	ppm _w	-	N ₂	-
00048	Относительная влажность	rH	%	-	-

Данные представлены в 32-разрядном формате с плавающей десятичной точкой (сначала слово с низким приоритетом) и одинарной точностью в соответствии с IEEE 754-1985.

6.4.2.6 Конфигурирование

Сверьте заводскую конфигурацию с указанной в накладной. Заводская конфигурация может отличаться от описанной здесь стандартной.

Регистр	Параметр	Значение параметра	Стан- дартно	Возмож- ность записи
00100	Адрес	1 247	247	Да
00101	Скорость передачи информации	1200 115200	19200	Да
00102	Проверка четности	Без проверки, проверка на четность	Без	Да
00103	Нагрузка	Выкл, Вкл	Выкл	Да

Параметр

Возмож-

Значение

Стан-

Регистр

Диапазон доступных адресов 1 ... 247 (стандартно 247).

Скорость передачи информации

Скорость определяется значениями регистра 0 ... 8.

Скорость передачи информации	Значение регистра
1200	0
2400	1
4800	2
9600	3
14400	4
19200	5 (стандартно)
38400	6
57600	7
115200	8

Проверка четности

RH

Проверка четности	Значение регистра
Без проверки	0 (стандартно)
Проверка на четность	1

Нагрузка

В процессе конфигурации регистра может быть включен нагрузочный резистор сопротивлением 120 Ом.

Нагрузка	Значение регистра
Выключена	0 (стандартно)
Включена	1

Элегазовая смесь SF₆ [%]

Процентное содержание элегаза может быть введено в интервале 0 ...100 %.

Элегазовая смесь SF ₆ [%]	Значение регистра
0 100 %	0 100 (стандартно 100)

Вспомогательный компонент

Стандартно вспомогательным компонентом газовой смеси является "N2".

Вспом. компонент газовой смеси	Значение регистра
N_2	0 (стандартно)
CF ₄	1

Тег

Здесь вводится имя преобразователя длиной до 16 символов.

6.4.2.7 Регистр состояния

Регистр	Функция	Значение для выполнения функции	Возм. записи
00200	Память ошибок	16 битов (см. след. таблицу)	Только чтение
00201	Сброс памяти ошибок	Запись 0х0001	Да
00202	Перезагрузка ПО	Запись 0х0001	Да
00203	Сброс на значения по умолчанию	Запись 0х0001	Да
00204	Вкл. нагрева (только GDHT-20)	Запись 0х0001	Да

После перезагрузки (с отключением питания) память ошибок сбрасывается. Запись 0x0001 в регистр с адресом 00201 оказывает то же действие.

Описание памяти ошибок

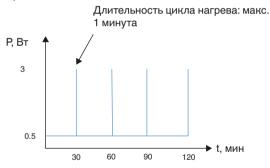
Бит	Описание
0	Сигнал давления ниже нижнего предела (< 0 бар)
1	Сигнал давления выше верхнего предела (< 16 бар)
2	Неисправность чувствительного элемента
3	Сигнал температуры ниже нижнего предела (< -40 °C)
4	Сигнал температуры выше верхнего предела (< 80 °C)
5	Ошибка связи с датчиком давления/температуры
6	Плотность газа ниже нижнего предела (сжижение элегаза SF ₆)
7	Плотность газа выше верхнего предела (> 80 г/л)
8	Неисправность датчика влажности (только для модели GDHT-20)
9	Ошибка связи с датчиком влажности (только для модели GDHT-20)
10	Повторяющаяся коммуникационная ошибка Modbus®

Пример: 0x0082

Установлены биты 1 и 7. Верхние пределы давления и плотности газа превышены.

Перезагрузка программного обеспечения

Запись 0x0001 в регистр 202 приводит перезагрузку ПО. После этого действуют все вновь введенные значения параметров (например, изменение адреса).


RU

Запись 0x0001 в регистр 203 приводит к сбросу настроек преобразователя на заводские значения с последующей перезагрузкой ПО. После этого все записываемые регистры сбрасываются на начальные настройки.

Включение нагрева (только для модели GDHT-20)

Запись 0x0001 в регистр 204 приводит к ручному осушению датчика влажности. Модель GDHT-20 автоматически производит нагрев с интервалом 30 минут после завершения последнего нагрева. Для установления более коротких интервалов регистр должен быть перезаписан вручную, минимальный интервал составляет 10 минут.

Частота нагрева

7. Обслуживание и очистка

7. Обслуживание и очистка

7.1 Обслуживание

Преобразователи не нуждаются в техническом обслуживании. Ремонт должен производиться только на заводе-изготовителе.

7.2 Очистка

осторожно!

- Перед выполнением очистки отсоедините преобразователь от источника давления, выключите его и отключите от источника питания.
- Очистку прибора следует производит влажной ветошью.
- Не допускается попадание влаги на электрические соединения.
- Перед возвратом промойте или очистите прибор для защиты персонала и окружающей среды от воздействия остатков измеряемой среды.
- Остатки измеряемой среды в демонтированном преобразователе могут представлять опасность для персонала, окружающей среды и оборудования. Примите необходимые меры предосторожности.
- Не используйте для очистки острые или твердые предметы, поскольку они могут повредить чувствительные элементы.

Информация о возврате прибора приведена в разделе 9.2 "Возврат".

8. Неисправности / 9. Демонтаж, возврат ...

8. Неисправности

В случае возникновения неисправностей в первую очередь проверьте правильность механического и электрического монтажа

Неисправности	Причины	Корректирующие действия
Плотность газа постоянно снижается	Утечки в элегазовой ячейке	Проверьте правильность механического монтажа преобразователя
		Выполните поиск утечек с помощью детектора утечек, например, GIR-10
Отсутствует коммуникация по протоколу Modbus [®]	Неправильно выполнены электрические соединения	Проверьте правильность подключения и источник питания
	Ошибки конфигурации	Заново подключите преобразователь с помощью комплекта для пусконаладки WIKA
Высокие показания влажности, тенденция к осушению	Типичное поведение после монтажа	Измеренные значения вскоре стабилизируются, см. раздел 6.1

осторожно!

Если неисправности не могут быть устранены выполнением описанных выше действий, немедленно отключите преобразователь и обеспечьте невозможность подачи давления и/или управляющего сигнала для защиты оборудования от случайного пуска.

Свяжитесь с производителем.

При необходимости возврата, пожалуйста, следуйте указаниям, приведенным в разделе 9.2 "Возврат".

9. Демонтаж, возврат и утилизация

ВНИМАНИЕ!

Остатки измеряемой среды в демонтированном преобразователе могут представлять опасность для персонала, окружающей среды и оборудования.
■ Примите необходимые меры предосторожности.

9. Демонтаж, возврат и утилизация

9.1 Демонтаж

При демонтаже прибора необходимое усилие должно прикладываться не к корпусу, а к специально предусмотренному для этого шестиграннику с помощью подходящего инструмента (см. раздел 6.1.3 "Монтаж прибора").

Отсоединение преобразователя допускается только при полностью сброшенном из системы давлении!

9.2 Возврат

ВНИМАНИЕ!

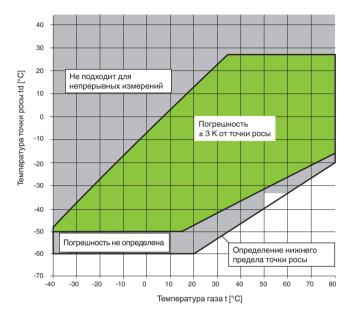
Перед отгрузкой прибора тщательно изучите следующую информацию:

Любое оборудование, отгружаемое в адрес WIKA, должно быть очищено от любых опасных веществ (кислот, щелочей, растворов и т.д.)

При возврате прибора используйте оригинальную или подходящую транспортную упаковку.

Информация по возврату оборудования приведена на веб-сайте в разделе "Сервис"

9.3 Утилизация


Нарушение правил утилизации может нанести ущерб окружающей среде.

Утилизация компонентов прибора и упаковочных материалов должна производиться способом, соответствующим местным нормам и правилам.

Не выбрасывать в бытовые мусорные контейнеры! Утилизация должна осуществляться в соответствии с местными нормами и правилами.

Приложение 1: Погрешность точки росы

