Регуляторы расхода и температуры

2007.06

6-10-25 XX

KT 512 DN 15-20

KTH, KTM, KTMI 512 DN 25-50 **KTM, KTMI 512** DN 65-100

Техническое описание

Применение:

Центральное отопление, системы холодоснабжения, первичная сторона тепловых пунктов систем централизованного теплоснабжения

Функции:

Стабилизация перепада давления на встроенном регулирующем клапане и регулирование расхода.

Закрываются при увеличении расхода или температуры. КТ 512: Линейная характеристика для небольших систем

КТН 512: Линейная характеристика КТМ 512: Равнопроцентная характеристика

KTMI 512: Равнопроцентная характеристика, обратная функция

Класс давления:

PN 25

Макс. перепад давления:

KT 512: 500 кПа = 5 бар

КТН/КТМ/КТМI 512: 1600 кПа = 16 бар

Перепад давления на дросселе (Fc):

12 кПа, 20 кПа или 40 кПа.

Температура:

Макс. рабочая температура: 140°C Мин. рабочая температура: -10°C

Среда:

Вода и нейтральные жидкости, смесь вода-гликоль.

Материал:

Корпус клапана: Ковкий чугун EN-GJS-400-18LT Диафрагмы и уплотнения: EPDM Шток клапана:

КТ 512: EPDM, плоский

КТН 512: Нержавеющая сталь и ЕРDM, плоский.

КТМ/КТМІ 512: Нержавеющая сталь и ЕРDM, конический.

Обработка поверхности:

Окраска методом электрофореза

Маркировка:

TA, DN, PN, Fc, Kvs, GGG-40.3 и направление потока.

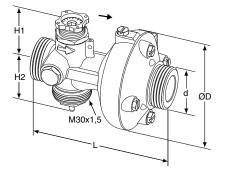
Фланцы:

DN 15-50 (опционально): в соответствии с Европейскими нормами EN-1092-2:1997, тип 16.

 $\overrightarrow{\text{DN}}$ 65-125: в соответствии с Европейскими нормами EN-1092-2:1997, тип 21.

Приводы:

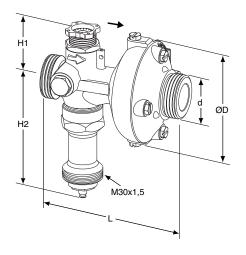
Клапан может быть укомплектован адаптером под наиболее распространенные приводы - см. стр. "Дополнительное оборудование" Необходимо проверить максимальный ход штока привода


Максималный ход штока регулирующего клапана:

КТ 512: 3 мм

KTH/KTM 512, DN 15-50: 10 MM KTM/KTMI 512, DN 65-100: 20 MM

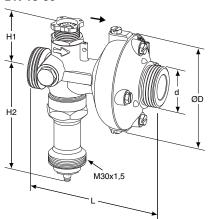
KTMI 512, DN 15-50: 6 мм


KT 512

TA No	DN	d	D	L	H1	H2	Kvs	q _{макс} (м ³ /ч)	КГ
Fc = 12 кПа 52 754-120	15/20	R1	78	110	45	40	4,1	0,9	1,0
Fc = 20 κΠa 52 754-020	15/20	R1	78	110	45	40	4,1	1,1	1,0
Fc = 40 κΠa 52 754-220	15/20	R1	78	110	45	40	4,1	1,5	1,0

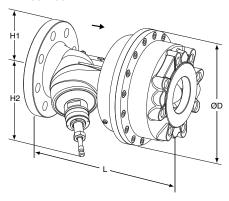
 \rightarrow = Направление потока

KTH 512



TA No	DN	d	D	L	H1	H2	Kvs	q _{макс} (м ³ /ч)	КГ
Fc = 12 κΠa 52 755-120	15/20	R1	78	110	45	98	4.1	0,9	1.5
52 755-125	25/32	R1 1/4	97	150	53	94	4,1 16	3,8	1,5 2,0
52 755-140	40/50	R2	125	190	66	94	35	7	4,5
Fc = 20 кПа									
52 755-020	15/20	R1	78	110	45	98	4,1	1,1	1,5
52 755-025	25/32	R1 1/4	97	150	53	94	16	4,4	2,0
52 755-040	40/50	R2	125	190	66	94	35	10	4,5
Fc = 40 кПа									
52 755-220	15/20	R1	78	110	45	98	4,1	1,5	1,5
52 755-225	25/32	R1 1/4	97	150	53	94	16	6,2	2,0
52 755-240	40/50	R2	125	190	66	94	35	13	4,5

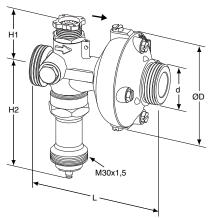
 \rightarrow = Направление потока


KTM 512

DN 15-50

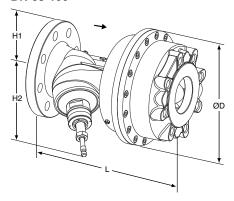
TA No	DN	d	D	L	H1	H2	Kvs	q _{макс} (м ³ /ч)	КГ
Fc = 12 кПа									
52 756-220	15/20	R1	78	110	45	98	4,1	0,9	1,5
52 756-225	25/32	R1 1/4	97	150	53	94	16	3,4	2,0
52 756-240	40/50	R2	125	190	66	94	35	7	4,5
Fc = 20 кПа									
52 756-020	15/20	R1	78	110	45	98	4,1	1,1	1,5
52 756-025	25/32	R1 1/4	97	150	53	94	16	4,2	2,0
52 756-040	40/50	R2	125	190	66	94	35	10	4,5
Fc = 40 кПа									
52 756-420	15/20	R1	78	110	45	98	4,1	1,5	1,5
52 756-425	25/32	R1 1/4	97	150	53	94	16	5,3	2,0
52 756-440	40/50	R2	125	190	66	94	35	13	4,5

DN 65-100



 \rightarrow = Направление потока

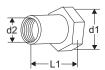
							q _{макс}	
TA No	DN	D	L	H1	H2	Kvs	(м ³ /ч)	КГ
Fc = 12 кПа	(PN 25)							
52 756-265	65	220	290	110	145	70	15	22
52 756-280	80	220	310	110	145	70	18	24
52 756-290	100	320	350	160	185	150	32	54
Fc = 20 кПа	(PN 25)							
52 756-065	65	220	290	110	145	70	20	22
52 756-080	80	220	310	110	145	70	24	24
52 756-090	100	320	350	160	185	150	40	54
Fc = 40 кПа	(PN 25)							
52 756-465	65	220	290	110	145	70	30	22
52 756-480	80	220	310	110	145	70	34	24
52 756-490	100	320	350	160	185	150	55	54
Fc = 12 кПа	(PN 16)							
52 786-290	100	320	350	160	185	150	32	54
Fc = 20 кПа	(PN 16)							
52 786-090	100	320	350	160	185	150	40	54
Fc = 40 кПа	(PN 16)							
52 786-490	100	320	350	160	185	150	55	54


KTMI 512

DN 15-50

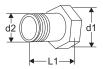
TA No	DN	d	D	L	H1	H2	Kvs	q _{макс} (м ³ /ч)	КГ
Fc = 12 κΠa	45/00	D4	70	440	45	00	4.4	0.0	4.5
52 756-320 52 756-325	15/20 25/32	R1 R1 1/4	78 97	110 150	45 53	98 94	4,1 16	0,9 3,4	1,5 2,0
52 756-340	40/50	R2	125	190	66	94	35	7	4,5
Fc = 20 кПа									
52 756-120	15/20	R1	78	110	45	98	4,1	1,1	1,5
52 756-125 52 756-140	25/32 40/50	R1 1/4 R2	97 125	150 190	53 66	94 94	16 35	4,2 10	2,0 4,5
32 / 30-140	40/50	NZ	123	190	00	94	33	10	4,5
Fc = 40 кПа									
52 756-520	15/20	R1	78	110	45	98	4,1	1,5	1,5
52 756-525	25/32	R1 1/4	97	150	53	94	16	5,3	2,0
52 756-540	40/50	R2	125	190	66	94	35	13	4,5

DN 65-100

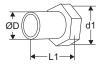


 \rightarrow = Направление потока

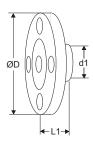
TA No	DN	D	L	H1	H2	Kvs	q _{макс} (м ³ /ч)	КГ
Fc = 12 кПа	(PN 25)							
52 756-365	65	220	290	110	145	70	15	22
52 756-380	80	220	310	110	145	70	18	24
52 756-390	100	320	350	160	185	150	32	54
Fc = 20 кПа	(PN 25)							
52 756-165	65	220	290	110	145	70	20	22
52 756-180	80	220	310	110	145	70	24	24
52 756-190	100	320	350	160	185	150	40	54
Fc = 40 кПа	(PN 25)							
52 756-565	65	220	290	110	145	70	30	22
52 756-580	80	220	310	110	145	70	34	24
52 756-590	100	320	350	160	185	150	55	54
Fc = 12 кПа	(PN 16)							
52 786-390	100	320	350	160	185	150	32	54
Fc = 20 кПа	(PN 16)							
52 786-190	100	320	350	160	185	150	40	54
Fc = 40 кПа	(PN 16)							
52 786-590	100	320	350	160	185	150	55	54


Соединения для DN 15-50

Соединение с внутренней резьбой


d1	d2	L1
G1	G1/2	26
G1	G3/4	32
G1 1/4	G1	47
G1 1/4	G1 1/4	52
G2	G1 1/2	52
G2	G2	64,5
	G1 G1 G1 1/4 G1 1/4 G2	G1 G1/2 G1 G3/4 G1 1/4 G1 G1 1/4 G1 1/4 G2 G1 1/2

Соединение с наружной резьбой


d1	d2	L1
G1	G1/2	34
G1	G3/4	40
G1 1/4	G1	40
G1 1/4	G1 1/4	45
G2	G1 1/2	45
G2	G2	50
	G1 G1 G1 1/4 G1 1/4 G2	G1 G1/2 G1 G3/4 G1 1/4 G1 G1 1/4 G1 1/4 G2 G1 1/2

Соединение для сварки

d1	D	L1	
G1	20,8	37	
G1	26,3	42	
G1 1/4	33,2	47	
G1 1/4	40,9	47	
G2	48,0	47	
G2	60,0	52	
	G1 G1 1/4 G1 1/4 G2	G1 26,3 G1 1/4 33,2 G1 1/4 40,9 G2 48,0	G1 26,3 42 G1 1/4 33,2 47 G1 1/4 40,9 47 G2 48,0 47

Фланцевое соединение

TA No	d1	D	L1
52 759-515	G1	95	10
52 759-520	G1	105	20
52 759-525	G1 1/4	115	5
52 759-532	G1 1/4	140	15
52 759-540	G2	150	5
52 759-550	G2	165	20

Адапторы для приводов

TA No	
52 757-001	Siemens SQS
52 757-002	Johnson Control V7420
52 757-003	Sauter AVM, AVF, SR 25, 52, 759, 702, L4
52 757-004	TAC Forta
52 757-005	TA MC55
52 757-006	Heimeier EMO-3
52 757-007	Lineg
52 757-008	Danfoss AMV
52 757-009	Belimo NRDVX
52 757-010	Honeywell ML
52 757-011	Samson 5825
52 757-012	Siemens SQX
52 757-013	Belimo NV

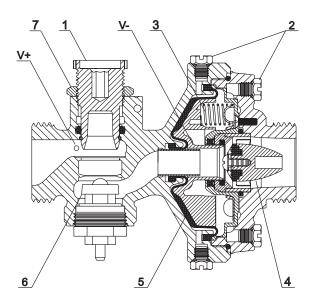
Принцип действия

Дроссель настройки расхода (1), клапан регулирования температуры (6) и осевой регулятор расхода (4) встроены последовательно в единый корпус. Давление перед дросселем (V+) через внутреннюю импульсную трубку воздействует на входную сторону диафрагмы (5) регулятора расхода и пытается закрыть его.

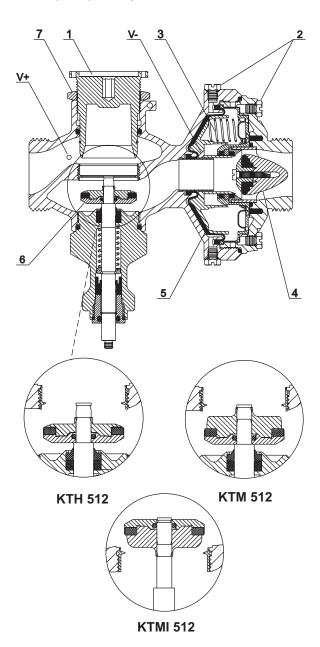
Давление после дросселя (V-) через другую внутреннюю импульсную трубку воздействует на выходную сторону диафрагмы регулятора расхода и совместно с усилием пружины (3) пытается открыть клапан. Точность регулирования расхода не зависит от давлений на входе и выходе клапана. Так как шток клапана регулирования температуры разгружен по давлению, нет необходимости в установке дополнительного регулятора перепада давления и можно применять приводы с небольшим усилием срабатывания.

KT 512

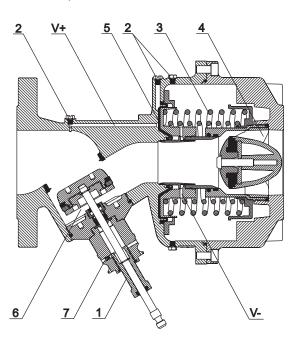
Для автоматического регулирования расхода и температуры, главным образом в системах центрального отопления и системах кондиционирования. Как правило, перепада давления Fc=12 кПа достаточно. Максимальный перепад давления на клапане - 5 бар.


KTH 512 / KTM 512

Применяется главным образом в первичных контурах тепловых пунктов, а так же в системах централизованного теплоснабжения и кондиционирования. Рекомендованный перепад давления Fc = 20 кПа. Максимальный перепад давления на клапане - 16 бар. Клапан КТН-512 имеет плоский шток с линейной регулирующей характеристикой. Шток клапана КТМ-512 имеет коническую форму с равнопроцентной регулирующей характеристикой. Для реализации функции защиты следует применять приводы, выдвигающие шток при отключении питания.

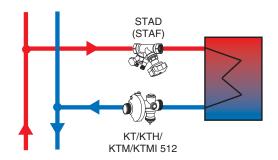

KTMI 512

Клапан КТМІ является инверсной модификацией клапана КТМ. Применяется в тепловых пунктах систем централизованного теплоснабжения. Для реализации функции защиты следует применять с приводами, втягивающими шток при отключении питания.


KT 512

KTH/KTM/KTMI 512

KTM 512, DN 65-100


Установка

ІКлапан может быть установлен как на обратном трубопроводе (после регулируемой нагрузки), так и на подающем (перед регулируемой нагрузкой). Однако предпочтительнее устанавливать его на обратном трубопроводе вследствие более благоприятных температурных условий.

Направление потока обозначено стрелкой (11) на корпусе клапана. Наилучшее положение клапана - горизонтальное, с винтами для выпуска воздуха сверху и видимой настроечной шкалой.

При использовании электропривода рекомендуется устанавливать регулятор с адаптером сверху или сбоку, что поможет избежать попадания воды в электрическую часть привода. Перед клапаном рекомендуется устанавливать фильтр.

Необходимо убедиться, что рабочая температура и давление не превышают допустимые для клапана значения.

Перед установкой регулятора проверьте его монтажную длину и расстояние между точками монтажа на трубопроводе. Установите соединения на трубопровод (приварные или резьбовые), в случае необходимости удалите оставшуюся после сварочных работ окалину. Затем установите регулятор. Если вы используете фланцевые соединения, проверьте диаметр делительной окружности и диаметр отверстий под болты.

Когда трубопровод и регулятор полностью заполнены водой и давление в системе стабилизировалось, выпустите воздух из корпуса клапана при помощи винтов (2).

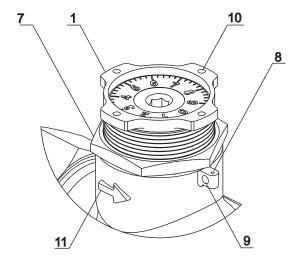
Вместо заглушки R1/4 можно установить дренажный штуцер или измерительный ниппель для измерения давления или температуры.

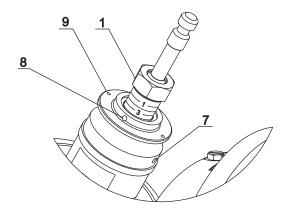
Для проведения измерений расхода, пусконаладочных работ и диагностирования системы при помощи балансировочного прибора TA CBI или измерительного прибора TA CMI рекомендуется установка балансировочного клапана STAD (STAF).

Настройка

Настройка расхода для DN 15-50

- 1. Полностью выкрутите стопорную гайку (7) дросселя.
- 2. Поверните дроссель (1) по часовой стрелке в начальное положение (точка 0,0 на настроечной шкале должна совпасть с красной отметкой (8) на корпусе клапана).
- Затем настройте соответствующее количество оборотов шкалы согласно расходной таблице.
- 4. Затяните стопорную гайку.
- При необходимости можно опломбировать настройку. Для этого используются отверстия (9) на корпусе клапана и (10) на дросселе.


Расход воды измеряется производителем на каждом клапане в каждом положении настроечной шкалы.


Настройка расхода для DN 65-100

- 1. Ослабьте стопорный винт (7) 2-мм торцовым ключом.
- 2. Поверните настроечный винт (1) по часовой стрелке до упора (настройка 0,0 на настроечной шкале).
- Выверните настроечный винт на необходимое количество оборотов.
- Продолжайте выкручивать настроечный винт до совпадения соответствующего десятичного значения с отметкой на корпусе клапана (8).
- 5. Затяните стопорный винт.

Расход воды измеряется производителем на каждом клапане в каждом положении настроечной шкалы.

Каждый клапан имеет свой собственный серийный номер и индивидуальную таблицу расходов, входящую в комплект поставки. Таблица справедлива только для воды. Копия таблицы хранится в архиве завода-изготовителя и может быть запрошена в случае необходимости. Для восстановления таблицы необходимы следующие данные: тип клапана, DN, Fc, серийный номер.

Подбор

Подберите размер клапана на максимальный расход, который зависит от номинального диаметра (DN) и перепада давления на дросселе (Fc).

Полный перепад давления рассчитывается по формуле:

 $\Delta p = Fc + 100 \text{ x q}^2 / \text{ Kvs}^2 [кПа], где q - это расход в м3/ч и Fc - постоянный перепад давления на дросселе (12, 20 или 40 кПа)$